Ad
related to: matching graphs to equations kuta pdf examples 6th form english
Search results
Results From The WOW.Com Content Network
In computer science and graph theory, the maximum weight matching problem is the problem of finding, in a weighted graph, a matching in which the sum of weights is maximized. A special case of it is the assignment problem , in which the input is restricted to be a bipartite graph , and the matching constrained to be have cardinality that of the ...
The Hosoya index of a graph G, its number of matchings, is used in chemoinformatics as a structural descriptor of a molecular graph. It may be evaluated as m G (1) (Gutman 1991). The third type of matching polynomial was introduced by Farrell (1980) as a version of the "acyclic polynomial" used in chemistry.
A graph can only contain a perfect matching when the graph has an even number of vertices. A near-perfect matching is one in which exactly one vertex is unmatched. Clearly, a graph can only contain a near-perfect matching when the graph has an odd number of vertices, and near-perfect matchings are maximum matchings. In the above figure, part (c ...
For example, consider the following graphs: [1] In graph (b) there is a perfect matching (of size 3) since all 6 vertices are matched; in graphs (a) and (c) there is a maximum-cardinality matching (of size 2) which is not perfect, since some vertices are unmatched. A perfect matching is also a minimum-size edge cover.
The case of exact graph matching is known as the graph isomorphism problem. [1] The problem of exact matching of a graph to a part of another graph is called subgraph isomorphism problem. Inexact graph matching refers to matching problems when exact matching is impossible, e.g., when the number of vertices in the two graphs are different. In ...
Maximum cardinality matching is a fundamental problem in graph theory. [1] We are given a graph G , and the goal is to find a matching containing as many edges as possible; that is, a maximum cardinality subset of the edges such that each vertex is adjacent to at most one edge of the subset.
In the mathematical discipline of graph theory the Tutte–Berge formula is a characterization of the size of a maximum matching in a graph. It is a generalization of Tutte theorem on perfect matchings , and is named after W. T. Tutte (who proved Tutte's theorem) and Claude Berge (who proved its generalization).
Matching (graph theory) – matching between different vertices of the graph; usually unrelated to preference-ordering. Envy-free matching – a relaxation of stable matching for many-to-one matching problems; Rainbow matching for edge colored graphs; Stable matching polytope; Lattice of stable matchings