Ads
related to: solid geometry problems
Search results
Results From The WOW.Com Content Network
A solid figure is the region of 3D space bounded by a two-dimensional closed surface; for example, a solid ball consists of a sphere and its interior. Solid geometry deals with the measurements of volumes of various solids, including pyramids , prisms (and other polyhedrons ), cubes , cylinders , cones (and truncated cones ).
Lines, L. (1965), Solid geometry: With Chapters on Space-lattices, Sphere-packs and Crystals, Dover. Reprint of 1935 edition. A problem on page 101 describes the shape formed by a sphere with a cylinder removed as a "napkin ring" and asks for a proof that the volume is the same as that of a sphere with diameter equal to the length of the hole.
Dehn's proof is an instance in which abstract algebra is used to prove an impossibility result in geometry.Other examples are doubling the cube and trisecting the angle.. Two polyhedra are called scissors-congruent if the first can be cut into finitely many polyhedral pieces that can be reassembled to yield the second.
Pages in category "Arithmetic problems of solid geometry" The following 2 pages are in this category, out of 2 total. This list may not reflect recent changes .
Pages in category "Unsolved problems in geometry" The following 48 pages are in this category, out of 48 total. This list may not reflect recent changes. A.
These axioms axiomatize Euclidean solid geometry. Removing five axioms mentioning "plane" in an essential way, namely I.4–8, and modifying III.4 and IV.1 to omit mention of planes, yields an axiomatization of Euclidean plane geometry.