Search results
Results From The WOW.Com Content Network
Chromosome segregation is the process in eukaryotes by which two sister chromatids formed as a consequence of DNA replication, or paired homologous chromosomes, separate from each other and migrate to opposite poles of the nucleus. This segregation process occurs during both mitosis and meiosis. Chromosome segregation also occurs in prokaryotes ...
To ensure that chromosome segregation takes place correctly, cells have developed a precise and complex mechanism. In the first place, cells must coordinate centrosome duplication with DNA replication, and a failure in this coordination will generate monopolar or multipolar mitotic spindles, which generally will produce abnormal chromosome ...
Figure 1. An interphase nucleus (left) and a set of mitotic chromosomes (right) from human tissue culture cells. Bar, 10 μm. Condensins are large protein complexes that play a central role in chromosome assembly and segregation during mitosis and meiosis (Figure 1).
The proteins encoded by these genes all function in the chromosome cohesion pathway that is employed in the cohesion of sister chromatids during mitosis, DNA repair, chromosome segregation and the regulation of developmental gene expression. Defects in these functions likely underlie many of the features of Cornelia de Lang Syndrome.
Micrograph showing condensed chromosomes in blue, kinetochores in pink, and microtubules in green during metaphase of mitosis. In cell biology, the spindle apparatus is the cytoskeletal structure of eukaryotic cells that forms during cell division to separate sister chromatids between daughter cells.
Shugoshin is a centromere protein for chromosome segregation during meiosis and mitosis. There are two types of Shugoshin protein: SGOL1 and SGOL2 . Sgo1 is only expressed in meiosis 1 for centromeric cohesion of the sister chromosomes, [ 24 ] while Sgo2, expressed in meiosis and mitosis, is responsible for the segregation of chromosomes at ...
The thick lines are chromosomes, and the thin blue lines are fibers pulling on the chromosomes and pushing the ends of the cell apart. The cell cycle in eukaryotes: I = Interphase, M = Mitosis, G 0 = Gap 0, G 1 = Gap 1, G 2 = Gap 2, S = Synthesis, G 3 = Gap 3. Cell division is the process by which a parent cell divides into two daughter cells. [1]
At the end of G2, the cell transitions into mitosis, where the nucleus divides. The G2 to M transition is dramatic; there is an all-or-nothing effect, and the transition is irreversible. This is advantageous to the cell because entering mitosis is a critical step in the life cycle of a cell.