When.com Web Search

  1. Ads

    related to: how to solve a perimeter

Search results

  1. Results From The WOW.Com Content Network
  2. Magic triangle (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Magic_triangle_(mathematics)

    A magic triangle or perimeter magic triangle [1] is an arrangement of the integers from 1 to n on the sides of a triangle with the same number of integers on each side, called the order of the triangle, so that the sum of integers on each side is a constant, the magic sum of the triangle.

  3. Perimeter - Wikipedia

    en.wikipedia.org/wiki/Perimeter

    Perimeter is the distance around a two dimensional shape, a measurement of the distance around something; the length of the boundary. A perimeter is a closed path that encompasses, surrounds, or outlines either a two dimensional shape or a one-dimensional length. The perimeter of a circle or an ellipse is called its circumference.

  4. Perimeter of an ellipse - Wikipedia

    en.wikipedia.org/wiki/Perimeter_of_an_ellipse

    In more recent years, computer programs have been used to find and calculate more precise approximations of the perimeter of an ellipse. In an online video about the perimeter of an ellipse, recreational mathematician and YouTuber Matt Parker, using a computer program, calculated numerous approximations for the perimeter of an ellipse. [4]

  5. Area - Wikipedia

    en.wikipedia.org/wiki/Area

    If the lengths of the three sides are known then Heron's formula can be used: () () where a, b, c are the sides of the triangle, and = (+ +) is half of its perimeter. [2] If an angle and its two included sides are given, the area is 1 2 a b sin ⁡ ( C ) {\displaystyle {\tfrac {1}{2}}ab\sin(C)} where C is the given angle and a and b are its ...

  6. Napkin folding problem - Wikipedia

    en.wikipedia.org/wiki/Napkin_folding_problem

    The simplest was based on the origami bird base and gave a solution with a perimeter of about 4.12 compared to the original perimeter of 4. The second solution can be used to make a figure with a perimeter as large as desired.

  7. Area of a circle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_circle

    Given a circle, let u n be the perimeter of an inscribed regular n-gon, and let U n be the perimeter of a circumscribed regular n-gon. Then u n and U n are lower and upper bounds for the circumference of the circle that become sharper and sharper as n increases, and their average (u n + U n)/2 is an especially good approximation to the ...