Ads
related to: molecular driving forces chegg problems questions quiz answers
Search results
Results From The WOW.Com Content Network
The folding funnel hypothesis is closely related to the hydrophobic collapse hypothesis, under which the driving force for protein folding is the stabilization associated with the sequestration of hydrophobic amino acid side chains in the interior of the folded protein. This allows the water solvent to maximize its entropy, lowering the total ...
The constitutive equations describe how the quantity in question responds to various stimuli via transport. Prominent examples include Fourier's law of heat conduction and the Navier–Stokes equations , which describe, respectively, the response of heat flux to temperature gradients and the relationship between fluid flux and the forces ...
Minimizing the number of hydrophobic side chains exposed to water is the principal driving force behind the folding process, [8] [9] [10] although formation of hydrogen bonds within the protein also stabilizes protein structure. [11] [12]
The hydrophobic effect exists as a driving force in thermodynamics only if there is the presence of an aqueous medium with an amphiphilic molecule containing a large hydrophobic region. [23] The strength of hydrogen bonds depends on their environment; thus, H-bonds enveloped in a hydrophobic core contribute more than H-bonds exposed to the ...
Motor proteins are the driving force behind most active transport of proteins and vesicles in the cytoplasm. Kinesins and cytoplasmic dyneins play essential roles in intracellular transport such as axonal transport and in the formation of the spindle apparatus and the separation of the chromosomes during mitosis and meiosis.
This discipline covers topics such as the measurement of molecular forces, molecular associations, allosteric interactions, Brownian motion, and cable theory. [2] Additional areas of study can be found on Outline of Biophysics. The discipline has required development of specialized equipment and procedures capable of imaging and manipulating ...
In molecular mechanics, several ways exist to define the environment surrounding a molecule or molecules of interest. A system can be simulated in vacuum (termed a gas-phase simulation) with no surrounding environment, but this is usually undesirable because it introduces artifacts in the molecular geometry, especially in charged molecules.
Identification of the molecular ion can be difficult. Examining organic compounds, the relative intensity of the molecular ion peak diminishes with branching and with increasing mass in a homologous series. In the spectrum for toluene for example, the molecular ion peak is located at 92 m/z corresponding to its molecular mass. Molecular ion ...