Search results
Results From The WOW.Com Content Network
The change from a series arrangement to a parallel arrangement results in the circuit having a peak in impedance at resonance rather than a minimum, so the circuit is an anti-resonator. The graph opposite shows that there is a minimum in the frequency response of the current at the resonance frequency ω 0 = 1 / L C {\displaystyle ~\omega _{0 ...
A tesla coil is a high-Q resonant circuit. Electrical resonance occurs in an electric circuit at a particular resonant frequency when the impedances or admittances of circuit elements cancel each other. In some circuits, this happens when the impedance between the input and output of the circuit is almost zero and the transfer function is close ...
For example, when tuning a radio to a particular station, the LC circuits are set at resonance for that particular carrier frequency. A series resonant circuit provides voltage magnification. A parallel resonant circuit provides current magnification. A parallel resonant circuit can be used as load impedance in output circuits of RF amplifiers.
Foster's second form of driving point impedance consists of a number of parallel connected series LC circuits. The realisation of the driving point impedance is by no means unique. Foster's realisation has the advantage that the poles and/or zeroes are directly associated with a particular resonant circuit, but there are many other realisations.
For example, a quarter wavelength (λ/4) shorted Lecher line acts like a parallel resonant circuit, appearing as a high impedance at its resonant frequency and low impedance at other frequencies. They are used because at UHF frequencies the value of inductors and capacitors needed for 'lumped component' tuned circuits becomes extremely low ...
Hartley oscillator using a common-drain n-channel JFET instead of a tube.. The Hartley oscillator is distinguished by a tank circuit consisting of two series-connected coils (or, often, a tapped coil) in parallel with a capacitor, with an amplifier between the relatively high impedance across the entire LC tank and the relatively low voltage/high current point between the coils.
It uses an inductor and two capacitors in parallel to form a resonant tank circuit, which determines the oscillation frequency. The output signal from the tank circuit is fed back into the input of an amplifier, where it is amplified and fed back into the tank circuit. The feedback signal provides the necessary phase shift for sustained ...
The Q factor is a parameter that describes the resonance behavior of an underdamped harmonic oscillator (resonator). Sinusoidally driven resonators having higher Q factors resonate with greater amplitudes (at the resonant frequency) but have a smaller range of frequencies around that frequency for which they resonate; the range of frequencies for which the oscillator resonates is called the ...