Search results
Results From The WOW.Com Content Network
To solve the puzzle, the numbers must be rearranged into numerical order from left to right, top to bottom. The 15 puzzle (also called Gem Puzzle, Boss Puzzle, Game of Fifteen, Mystic Square and more) is a sliding puzzle. It has 15 square tiles numbered 1 to 15 in a frame that is 4 tile positions high and 4 tile positions wide, with one ...
The algorithm (and therefore the program code) is simpler than other algorithms, especially compared to strong algorithms that ensure a solution to the most difficult puzzles. The disadvantage of this method is that the solving time may be slow compared to algorithms modeled after deductive methods.
Ariadne's thread, named for the legend of Ariadne, is solving a problem which has multiple apparent ways to proceed—such as a physical maze, a logic puzzle, or an ethical dilemma—through an exhaustive application of logic to all available routes. It is the particular method used that is able to follow completely through to trace steps or ...
Some of the puzzles are well known classics, some are variations of known puzzles making them more algorithmic, and some are new. [4] They include: Puzzles involving chessboards, including the eight queens puzzle, knight's tours, and the mutilated chessboard problem [1] [3] [4] Balance puzzles [3] River crossing puzzles [3] [4] The Tower of ...
This is a list of puzzles that cannot be solved. An impossible puzzle is a puzzle that cannot be resolved, either due to lack of sufficient information, or any number of logical impossibilities. Kookrooster maken 23; 15 Puzzle – Slide fifteen numbered tiles into numerical order. It is impossible to solve in half of the starting positions. [1]
Hashiwokakero (橋をかけろ Hashi o kakero; lit. "build bridges!") is a type of logic puzzle published by Nikoli. [1] It has also been published in English under the name Bridges or Chopsticks (based on a mistranslation: the hashi of the title, 橋, means bridge; hashi written with another character, 箸, means chopsticks).
God's algorithm is a notion originating in discussions of ways to solve the Rubik's Cube puzzle, [1] but which can also be applied to other combinatorial puzzles and mathematical games. [2] It refers to any algorithm which produces a solution having the fewest possible moves (i.e., the solver should not require any more than this number).
The Dancing Links algorithm solving a polycube puzzle. In computer science, dancing links (DLX) is a technique for adding and deleting a node from a circular doubly linked list. It is particularly useful for efficiently implementing backtracking algorithms, such as Knuth's Algorithm X for the exact cover problem. [1]