Ads
related to: power mosfet driver
Search results
Results From The WOW.Com Content Network
A power MOSFET is a specific type of metal–oxide–semiconductor field-effect transistor (MOSFET) designed to handle significant power levels. Compared to the other power semiconductor devices , such as an insulated-gate bipolar transistor (IGBT) or a thyristor , its main advantages are high switching speed and good efficiency at low voltages.
MOSFET gate driver is a specialized circuit that is used to drive the gate (gate driver) of power MOSFETs effectively and efficiently in high-speed switching applications. The addition of high-speed MOSFET gate drivers are the last step if the turn-on is intended to fully enhance the conducting channel of the MOSFET technology.
A gate driver is a power amplifier that accepts a low-power input from a controller IC and produces a high-current drive input for the gate of a high-power transistor such as an IGBT or power MOSFET. Gate drivers can be provided either on-chip or as a discrete module. In essence, a gate driver consists of a level shifter in combination with an ...
MOSFET, showing gate (G), body (B), source (S), and drain (D) terminals. The gate is separated from the body by an insulating layer (pink).. The MOSFET (metal–oxide–semiconductor field-effect transistor) [1] is a type of insulated-gate field-effect transistor (IGFET) that is fabricated by the controlled oxidation of a semiconductor, typically silicon.
Power MOSFETs with lateral structure are mainly used in high-end audio amplifiers and high-power PA systems. Their advantage is a better behaviour in the saturated region (corresponding to the linear region of a bipolar transistor) than the vertical MOSFETs.
Switched-mode power supplies (e.g. buck, boost, and buck-boost converters) are used in LED flashlights and household LED lamps. Power MOSFETs are typically used for switching LED drivers, which is an efficient solution to drive high-brightness LEDs.
The power MOSFET is the most common power device in the world, due to its low gate drive power, fast switching speed, [13] easy advanced paralleling capability, [13] [14] wide bandwidth, ruggedness, easy drive, simple biasing, ease of application, and ease of repair. [14]
A nanowire MOSFET's current–voltage characteristic (left, using logarithmic y-axis) and a simulation of the electron density (right) forming a conductive inversion channel which connects at the ~0.45 V threshold voltage.