Search results
Results From The WOW.Com Content Network
The drag equation may be derived to within a multiplicative constant by the method of dimensional analysis. If a moving fluid meets an object, it exerts a force on the object. Suppose that the fluid is a liquid, and the variables involved – under some conditions – are the: speed u, fluid density ρ, kinematic viscosity ν of the fluid,
Drag coefficients in fluids with Reynolds number approximately 10 4 [1] [2] Shapes are depicted with the same projected frontal area. In fluid dynamics, the drag coefficient (commonly denoted as: , or ) is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water.
Parasitic drag, or profile drag, is the sum of viscous pressure drag (form drag) and drag due to surface roughness (skin friction drag). Additionally, the presence of multiple bodies in relative proximity may incur so called interference drag , which is sometimes described as a component of parasitic drag.
The drag equation is—assuming ρ, g and C d to be constants: = =. Although this is a Riccati equation that can be solved by reduction to a second-order linear differential equation, it is easier to separate variables .
Note the minus sign in the equation, the drag force points in the opposite direction to the relative velocity: drag opposes the motion. Stokes' law makes the following assumptions for the behavior of a particle in a fluid: Laminar flow; No inertial effects (zero Reynolds number) Spherical particles; Homogeneous (uniform in composition) material
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
The linear motion can be of two types: uniform linear motion, with constant velocity (zero acceleration); and non-uniform linear motion, with variable velocity (non-zero acceleration). The motion of a particle (a point-like object) along a line can be described by its position x {\displaystyle x} , which varies with t {\displaystyle t} (time).
In geometry, a tractrix (from Latin trahere 'to pull, drag'; plural: tractrices) is the curve along which an object moves, under the influence of friction, when pulled on a horizontal plane by a line segment attached to a pulling point (the tractor) that moves at a right angle to the initial line between the object and the puller at an ...