When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Disaccharide - Wikipedia

    en.wikipedia.org/wiki/Disaccharide

    The glycosidic bond can be formed between any hydroxy group on the component monosaccharide. So, even if both component sugars are the same (e.g., glucose), different bond combinations (regiochemistry) and stereochemistry (alpha-or beta-) result in disaccharides that are diastereoisomers with different chemical and physical properties ...

  3. Glycosidic bond - Wikipedia

    en.wikipedia.org/wiki/Glycosidic_bond

    Glycosidic bonds of the form discussed above are known as O-glycosidic bonds, in reference to the glycosidic oxygen that links the glycoside to the aglycone or reducing end sugar. In analogy, one also considers S-glycosidic bonds (which form thioglycosides ), where the oxygen of the glycosidic bond is replaced with a sulfur atom.

  4. Oligosaccharide nomenclature - Wikipedia

    en.wikipedia.org/wiki/Oligosaccharide_nomenclature

    When the glycosidic linkages and configurations of the monosaccharides are known, they may be included as a prefix to the name, with the notation for glycosidic linkages preceding the symbols designating the configuration. [3] The following example will help illustrate this concept: (1→4)-β-D-Glucan

  5. Reducing sugar - Wikipedia

    en.wikipedia.org/wiki/Reducing_sugar

    Reducing disaccharides like lactose and maltose have only one of their two anomeric carbons involved in the glycosidic bond, while the other is free and can convert to an open-chain form with an aldehyde group. The aldehyde functional group allows the sugar to act as a reducing agent, for example, in the Tollens' test or Benedict's test.

  6. Sugar - Wikipedia

    en.wikipedia.org/wiki/Sugar

    The acyclic mono- and disaccharides contain either aldehyde groups or ketone groups. These carbon-oxygen double bonds (C=O) are the reactive centers. All saccharides with more than one ring in their structure result from two or more monosaccharides joined by glycosidic bonds with the resultant loss of a molecule of water (H 2 O) per bond. [66]

  7. Trehalose - Wikipedia

    en.wikipedia.org/wiki/Trehalose

    Trehalose is a disaccharide formed by a 1,1-glycosidic bond between two α-glucose units. It is found in nature as a disaccharide and also as a monomer in some polymers. [7] Two other stereoisomers exist: α,β-trehalose, also called neotrehalose, and β,β-trehalose, also called isotrehalose. Neither of these alternate isomers has been ...

  8. Hydrolysis - Wikipedia

    en.wikipedia.org/wiki/Hydrolysis

    The glycoside bond is represented by the central oxygen atom, which holds the two monosaccharide units together. Monosaccharides can be linked together by glycosidic bonds, which can be cleaved by hydrolysis. Two, three, several or many monosaccharides thus linked form disaccharides, trisaccharides, oligosaccharides, or polysaccharides ...

  9. Carbohydrate synthesis - Wikipedia

    en.wikipedia.org/wiki/Carbohydrate_synthesis

    Carbohydrate synthesis is a sub-field of organic chemistry concerned with generating complex carbohydrate structures from simple units (monosaccharides). The generation of carbohydrate structures usually involves linking monosaccharides or oligosaccharides through glycosidic bonds, a process called glycosylation.