When.com Web Search

  1. Ads

    related to: plane wavefront model

Search results

  1. Results From The WOW.Com Content Network
  2. Wavefront - Wikipedia

    en.wikipedia.org/wiki/Wavefront

    The plane wavefront is a good model for a surface-section of a very large spherical wavefront; for instance, sunlight strikes the earth with a spherical wavefront that has a radius of about 150 million kilometers (1 AU). For many purposes, such a wavefront can be considered planar over distances of the diameter of Earth.

  3. Huygens–Fresnel principle - Wikipedia

    en.wikipedia.org/wiki/Huygens–Fresnel_principle

    Wave refraction in the manner of Huygens Wave diffraction in the manner of Huygens and Fresnel. The Huygens–Fresnel principle (named after Dutch physicist Christiaan Huygens and French physicist Augustin-Jean Fresnel) states that every point on a wavefront is itself the source of spherical wavelets, and the secondary wavelets emanating from different points mutually interfere. [1]

  4. Plane wave - Wikipedia

    en.wikipedia.org/wiki/Plane_wave

    The term is also used, even more specifically, to mean a "monochromatic" or sinusoidal plane wave: a travelling plane wave whose profile () is a sinusoidal function. That is, (,) = ⁡ (() +) The parameter , which may be a scalar or a vector, is called the amplitude of the wave; the scalar coefficient is its "spatial frequency"; and the scalar is its "phase shift".

  5. Huygens principle of double refraction - Wikipedia

    en.wikipedia.org/wiki/Huygens_principle_of...

    The new wavefront for the o-ray will be tangent to the spherical wavelets, while the new wavefront for the e-ray will be tangent to the ellipsoidal wavelets. Each plane wavefront propagates straight ahead but with different velocities: V 0 for the o-ray and V e for the e-ray. The direction of the k-vector is always perpendicular to the ...

  6. Fraunhofer diffraction - Wikipedia

    en.wikipedia.org/wiki/Fraunhofer_diffraction

    In optics, the Fraunhofer diffraction equation is used to model the diffraction of waves when plane waves are incident on a diffracting object, and the diffraction pattern is viewed at a sufficiently long distance (a distance satisfying Fraunhofer condition) from the object (in the far-field region), and also when it is viewed at the focal plane of an imaging lens.

  7. Wave interference - Wikipedia

    en.wikipedia.org/wiki/Wave_interference

    In physics, interference is a phenomenon in which two coherent waves are combined by adding their intensities or displacements with due consideration for their phase difference. The resultant wave may have greater intensity (constructive interference) or lower amplitude (destructive interference) if the two waves are in phase or out of phase ...

  8. Orbital angular momentum of light - Wikipedia

    en.wikipedia.org/wiki/Orbital_angular_momentum...

    Helical modes of the electromagnetic field are characterized by a wavefront that is shaped as a helix, with an optical vortex in the center, at the beam axis (see figure). If the phase varies around the axis of such a wave, it carries orbital angular momentum. [1] In the figure to the right, the first column shows the beam wavefront shape.

  9. Wave front set - Wikipedia

    en.wikipedia.org/wiki/Wave_front_set

    Formally, in Euclidean space, the wave front set of ƒ is defined as the complement of the set of all pairs (x0, v) such that there exists a test function with (x0) ≠ 0 and an open cone Γ containing v such that the estimate. holds for all positive integers N. Here denotes the Fourier transform. Observe that the wavefront set is conical in ...