Ads
related to: probability example problems with solution calculator 1 0 download
Search results
Results From The WOW.Com Content Network
Secretary problem. Graphs of probabilities of getting the best candidate (red circles) from n applications, and k / n (blue crosses) where k is the sample size. The secretary problem demonstrates a scenario involving optimal stopping theory [1][2] that is studied extensively in the fields of applied probability, statistics, and decision theory.
Coupon collector's problem. In probability theory, the coupon collector's problem refers to mathematical analysis of "collect all coupons and win" contests. It asks the following question: if each box of a given product (e.g., breakfast cereals) contains a coupon, and there are n different types of coupons, what is the probability that more ...
100 prisoners problem. Each prisoner has to find their own number in one of 100 drawers, but may open only 50 of the drawers. The 100 prisoners problem is a mathematical problem in probability theory and combinatorics. In this problem, 100 numbered prisoners must find their own numbers in one of 100 drawers in order to survive.
The problem of points, also called the problem of division of the stakes, is a classical problem in probability theory. One of the famous problems that motivated the beginnings of modern probability theory in the 17th century, it led Blaise Pascal to the first explicit reasoning about what today is known as an expected value .
The probability of drawing another gold coin from the same box is 0 in (a), and 1 in (b) and (c). Thus, the overall probability of drawing a gold coin in the second draw is 0 / 3 + 1 / 3 + 1 / 3 = 2 / 3 . The problem can be reframed by describing the boxes as each having one drawer on each of two sides. Each ...
The short-needle problem can also be solved without any integration, in a way that explains the formula for p from the geometric fact that a circle of diameter t will cross the distance t strips always (i.e. with probability 1) in exactly two spots. This solution was given by Joseph-Émile Barbier in 1860 [5] and is also referred to as "Buffon ...
Bayes' theorem (alternatively Bayes' law or Bayes' rule, after Thomas Bayes) gives a mathematical rule for inverting conditional probabilities, allowing us to find the probability of a cause given its effect. [1] For example, if the risk of developing health problems is known to increase with age, Bayes' theorem allows the risk to an individual ...
In the case m 0 = 1, this is equivalent to the existence of a random variable X supported on [0, 1], such that E[X n] = m n. The essential difference between this and other well-known moment problems is that this is on a bounded interval, whereas in the Stieltjes moment problem one considers a half-line [0, ∞), and in the Hamburger moment ...