Search results
Results From The WOW.Com Content Network
Maximum and minimum. Largest and smallest value taken by a function at a given point. Local and global maxima and minima for cos (3π x)/ x, 0.1≤ x ≤1.1. In mathematical analysis, the maximum and minimum[a] of a function are, respectively, the greatest and least value taken by the function. Known generically as extremum, [b] they may be ...
Extreme value theorem. A continuous function on the closed interval showing the absolute max (red) and the absolute min (blue). In calculus, the extreme value theorem states that if a real-valued function is continuous on the closed and bounded interval , then must attain a maximum and a minimum, each at least once.
The number 4,294,967,295, equivalent to the hexadecimal value FFFF,FFFF16, is the maximum value for a 32-bit unsigned integer in computing. [6] It is therefore the maximum value for a variable declared as an unsigned integer (usually indicated by the unsigned codeword) in many programming languages running on modern computers.
The minimum value in this case is 1, occurring at x = 0. Similarly, the notation asks for the maximum value of the objective function 2x, where x may be any real number. In this case, there is no such maximum as the objective function is unbounded, so the answer is "infinity" or "undefined".
Maximum principle. In the mathematical fields of differential equations and geometric analysis, the maximum principle is one of the most useful and best known tools of study. Solutions of a differential inequality in a domain D satisfy the maximum principle if they achieve their maxima at the boundary of D. The maximum principle enables one to ...
By weighing some fraction of the products an average weight can be found, which will always be slightly different from the long-term average. By using standard deviations, a minimum and maximum value can be calculated that the averaged weight will be within some very high percentage of the time (99.9% or more).
The sample maximum and minimum are the least robust statistics: they are maximally sensitive to outliers.. This can either be an advantage or a drawback: if extreme values are real (not measurement errors), and of real consequence, as in applications of extreme value theory such as building dikes or financial loss, then outliers (as reflected in sample extrema) are important.
The number 2,147,483,647 (or hexadecimal 7FFFFFFF 16) is the maximum positive value for a 32-bit signed binary integer in computing. It is therefore the maximum value for variables declared as integers (e.g., as int) in many programming languages.