Ads
related to: secant equation calculator given
Search results
Results From The WOW.Com Content Network
In numerical analysis, the secant method is a root-finding algorithm that uses a succession of roots of secant lines to better approximate a root of a function f. The secant method can be thought of as a finite-difference approximation of Newton's method , so it is considered a quasi-Newton method .
The secant method increases the number of correct digits by "only" a factor of roughly 1.6 per step, but one can do twice as many steps of the secant method within a given time. Since the secant method can carry out twice as many steps in the same time as Steffensen's method, [b] in practical use the secant method actually converges faster than ...
A circular segment (in green) is enclosed between a secant/chord (the dashed line) and the arc whose endpoints equal the chord's (the arc shown above the green area). In geometry, a circular segment or disk segment (symbol: ⌓) is a region of a disk [1] which is "cut off" from the rest of the disk by a straight line.
Sidi's method reduces to the secant method if we take k = 1. In this case the polynomial p n , 1 ( x ) {\displaystyle p_{n,1}(x)} is the linear approximation of f {\displaystyle f} around α {\displaystyle \alpha } which is used in the n th iteration of the secant method.
Quasi-Newton methods are a generalization of the secant method to find the root of the first derivative for multidimensional problems. In multiple dimensions the secant equation is under-determined, and quasi-Newton methods differ in how they constrain the solution, typically by adding a simple low-rank update to the current estimate of the ...
The word secant comes from the Latin word secare, meaning to cut. [2] In the case of a circle, a secant intersects the circle at exactly two points. A chord is the line segment determined by the two points, that is, the interval on the secant whose ends are the two points. [3]
The idea to combine the bisection method with the secant method goes back to Dekker (1969).. Suppose that we want to solve the equation f(x) = 0.As with the bisection method, we need to initialize Dekker's method with two points, say a 0 and b 0, such that f(a 0) and f(b 0) have opposite signs.
Muller's method is a root-finding algorithm, a numerical method for solving equations of the form f(x) = 0.It was first presented by David E. Muller in 1956.. Muller's method proceeds according to a third-order recurrence relation similar to the second-order recurrence relation of the secant method.