Ads
related to: ultrasound scans explained diagram
Search results
Results From The WOW.Com Content Network
Ultrasound is defined by the American National Standards Institute as "sound at frequencies greater than 20 kHz". In air at atmospheric pressure, ultrasonic waves have wavelengths of 1.9 cm or less. Ultrasound can be generated at very high frequencies; ultrasound is used for sonochemistry at frequencies up to multiple hundreds of kilohertz.
By changing the pulse delays, the computer can scan the beam of ultrasound in a raster pattern across the tissue. Echoes reflected by different density tissue, received by the transducers, build up an image of the underlying structures. Weld examination by phased array. TOP: The phased array probe emits a series of beams to flood the weld with ...
Medical ultrasound includes diagnostic techniques (mainly imaging techniques) using ultrasound, as well as therapeutic applications of ultrasound. In diagnosis, it is used to create an image of internal body structures such as tendons, muscles, joints, blood vessels, and internal organs, to measure some characteristics (e.g., distances and velocities) or to generate an informative audible sound.
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
The transducer may be used in contact with the skin, as in fetal ultrasound imaging, or inserted into a body opening such as the rectum or vagina. Clinicians who perform ultrasound-guided procedures often use a probe positioning system to hold the ultrasonic transducer. [9] Compared to other medical imaging modalities, ultrasound has several ...
Endoscopic ultrasound (EUS) or echo-endoscopy is a medical procedure in which endoscopy (insertion of a probe into a hollow organ) is combined with ultrasound to obtain images of the internal organs in the chest, abdomen and colon. It can be used to visualize the walls of these organs, or to look at adjacent structures.
Abdominal ultrasound can be used to diagnose abnormalities in various internal organs, such as the kidneys, [1] liver, gallbladder, pancreas, spleen and abdominal aorta.If Doppler ultrasonography is added, the blood flow inside blood vessels can be evaluated as well (for example, to look for renal artery stenosis).
The reflected ultrasound is received by the probe, transformed into an electric impulse as voltage, and sent to the engine for signal processing and conversion to an image on the screen. The depth reached by the ultrasound beam is dependent on the frequency of the probe used. The higher the frequency, the lesser the depth reached. [9]