When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Resampling (statistics) - Wikipedia

    en.wikipedia.org/wiki/Resampling_(statistics)

    The best example of the plug-in principle, the bootstrapping method. Bootstrapping is a statistical method for estimating the sampling distribution of an estimator by sampling with replacement from the original sample, most often with the purpose of deriving robust estimates of standard errors and confidence intervals of a population parameter like a mean, median, proportion, odds ratio ...

  3. Bootstrapping (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bootstrapping_(statistics)

    The bootstrap sample is taken from the original by using sampling with replacement (e.g. we might 'resample' 5 times from [1,2,3,4,5] and get [2,5,4,4,1]), so, assuming N is sufficiently large, for all practical purposes there is virtually zero probability that it will be identical to the original "real" sample. This process is repeated a large ...

  4. Bootstrap aggregating - Wikipedia

    en.wikipedia.org/wiki/Bootstrap_aggregating

    Sampling with replacement ensures each bootstrap is independent from its peers, as it does not depend on previous chosen samples when sampling. Then, m {\displaystyle m} models are fitted using the above bootstrap samples and combined by averaging the output (for regression) or voting (for classification).

  5. Simple random sample - Wikipedia

    en.wikipedia.org/wiki/Simple_random_sample

    Although simple random sampling can be conducted with replacement instead, this is less common and would normally be described more fully as simple random sampling with replacement. Sampling done without replacement is no longer independent, but still satisfies exchangeability , hence most results of mathematical statistics still hold.

  6. Jackknife resampling - Wikipedia

    en.wikipedia.org/wiki/Jackknife_resampling

    Schematic of Jackknife Resampling. In statistics, the jackknife (jackknife cross-validation) is a cross-validation technique and, therefore, a form of resampling.It is especially useful for bias and variance estimation.

  7. Probability-proportional-to-size sampling - Wikipedia

    en.wikipedia.org/wiki/Probability-proportional...

    The pps sampling results in a fixed sample size n (as opposed to Poisson sampling which is similar but results in a random sample size with expectancy of n). When selecting items with replacement the selection procedure is to just draw one item at a time (like getting n draws from a multinomial distribution with N elements, each with their own ...

  8. Exchangeable random variables - Wikipedia

    en.wikipedia.org/wiki/Exchangeable_random_variables

    Suppose marbles are drawn without replacement until the urn is empty. Let be the indicator random variable of the event that the -th marble drawn is red. Then {} =, …, + is an exchangeable sequence. This sequence cannot be extended to any longer exchangeable sequence.

  9. Out-of-bag error - Wikipedia

    en.wikipedia.org/wiki/Out-of-bag_error

    One set, the bootstrap sample, is the data chosen to be "in-the-bag" by sampling with replacement. The out-of-bag set is all data not chosen in the sampling process. When this process is repeated, such as when building a random forest, many bootstrap samples and OOB sets are created. The OOB sets can be aggregated into one dataset, but each ...