When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Greedy algorithm - Wikipedia

    en.wikipedia.org/wiki/Greedy_algorithm

    It iteratively makes one greedy choice after another, reducing each given problem into a smaller one. In other words, a greedy algorithm never reconsiders its choices. This is the main difference from dynamic programming, which is exhaustive and is guaranteed to find the solution. After every stage, dynamic programming makes decisions based on ...

  3. Algorithmic technique - Wikipedia

    en.wikipedia.org/wiki/Algorithmic_technique

    Dynamic programming is a systematic technique in which a complex problem is decomposed recursively into smaller, overlapping subproblems for solution. Dynamic programming stores the results of the overlapping sub-problems locally using an optimization technique called memoization .

  4. Optimal substructure - Wikipedia

    en.wikipedia.org/wiki/Optimal_substructure

    Typically, a greedy algorithm is used to solve a problem with optimal substructure if it can be proven by induction that this is optimal at each step. [1] Otherwise, provided the problem exhibits overlapping subproblems as well, divide-and-conquer methods or dynamic programming may be used. If there are no appropriate greedy algorithms and the ...

  5. Dynamic programming - Wikipedia

    en.wikipedia.org/wiki/Dynamic_programming

    From a dynamic programming point of view, Dijkstra's algorithm for the shortest path problem is a successive approximation scheme that solves the dynamic programming functional equation for the shortest path problem by the Reaching method.

  6. Algorithm - Wikipedia

    en.wikipedia.org/wiki/Algorithm

    Using memoization dynamic programming reduces the complexity of many problems from exponential to polynomial. The greedy method Greedy algorithms, similarly to a dynamic programming, work by examining substructures, in this case not of the problem but of a given solution. Such algorithms start with some solution and improve it by making small ...

  7. Knapsack problem - Wikipedia

    en.wikipedia.org/wiki/Knapsack_problem

    In particular, if the are nonnegative but not integers, we could still use the dynamic programming algorithm by scaling and rounding (i.e. using fixed-point arithmetic), but if the problem requires fractional digits of precision to arrive at the correct answer, will need to be scaled by , and the DP algorithm will require () space and () time.

  8. Algorithmic paradigm - Wikipedia

    en.wikipedia.org/wiki/Algorithmic_paradigm

    An algorithmic paradigm or algorithm design paradigm is a generic model or framework which underlies the design of a class of algorithms. An algorithmic paradigm is an abstraction higher than the notion of an algorithm, just as an algorithm is an abstraction higher than a computer program. [1] [2]

  9. Assignment problem - Wikipedia

    en.wikipedia.org/wiki/Assignment_problem

    This algorithm may yield a non-optimal solution. For example, suppose there are two tasks and two agents with costs as follows: Alice: Task 1 = 1, Task 2 = 2. George: Task 1 = 5, Task 2 = 8. The greedy algorithm would assign Task 1 to Alice and Task 2 to George, for a total cost of 9; but the reverse assignment has a total cost of 7.