When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Solenoid - Wikipedia

    en.wikipedia.org/wiki/Solenoid

    The magnetic field lines follow the longitudinal path of the solenoid inside, so they must go in the opposite direction outside of the solenoid so that the lines can form loops. However, the volume outside the solenoid is much greater than the volume inside, so the density of magnetic field lines outside is greatly reduced.

  3. Solenoid (engineering) - Wikipedia

    en.wikipedia.org/wiki/Solenoid_(engineering)

    The device creates a magnetic field [1] from electric current, and uses the magnetic field to create linear motion. [2] [3] [4] In electromagnetic technology, a solenoid is an actuator assembly with a sliding ferromagnetic plunger inside the coil. Without power, the plunger extends for part of its length outside the coil; applying power pulls ...

  4. Magnetic field - Wikipedia

    en.wikipedia.org/wiki/Magnetic_field

    These two models produce two different magnetic fields, H and B. Outside a material, though, the two are identical (to a multiplicative constant) so that in many cases the distinction can be ignored. This is particularly true for magnetic fields, such as those due to electric currents, that are not generated by magnetic materials.

  5. Electromagnetic induction - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_induction

    the magnetic field B changes (e.g. an alternating magnetic field, or moving a wire loop towards a bar magnet where the B field is stronger), the wire loop is deformed and the surface Σ changes, the orientation of the surface dA changes (e.g. spinning a wire loop into a fixed magnetic field), any combination of the above

  6. Faraday's law of induction - Wikipedia

    en.wikipedia.org/wiki/Faraday's_law_of_induction

    Faraday's law is a single equation describing two different phenomena: the motional emf generated by a magnetic force on a moving wire (see the Lorentz force), and the transformer emf generated by an electric force due to a changing magnetic field (described by the Maxwell–Faraday equation).

  7. Magnet - Wikipedia

    en.wikipedia.org/wiki/Magnet

    The strength of the magnetic field it produces is at any given point proportional to the magnitude of its magnetic moment. In addition, when the magnet is put into an external magnetic field, produced by a different source, it is subject to a torque tending to orient the magnetic moment parallel to the field. [16]

  8. Magnetic dipole - Wikipedia

    en.wikipedia.org/wiki/Magnetic_dipole

    An electrostatic analogue for a magnetic moment: two opposing charges separated by a finite distance. Each arrow represents the direction of the field vector at that point. The magnetic field of a current loop. The ring represents the current loop, which goes into the page at the x and comes out at the dot.

  9. Electropermanent magnet - Wikipedia

    en.wikipedia.org/wiki/Electropermanent_magnet

    The magnetic field generated by the EPM is produced by the permanent magnets not by electric currents and this is the main difference with the electromagnets. An EPM uses only a pulse of current to magnetize one of the magnet in a desired direction (turning on and off the external magnetic field of the latch).