Search results
Results From The WOW.Com Content Network
Torsion of a square section bar Example of torsion mechanics. In the field of solid mechanics, torsion is the twisting of an object due to an applied torque [1] [2].Torsion could be defined as strain [3] [4] or angular deformation [5], and is measured by the angle a chosen section is rotated from its equilibrium position [6].
is the torque exerted by the spring in newton-meters, and is the angle of twist from its equilibrium position in radians κ {\displaystyle \kappa \,} is a constant with units of newton-meters / radian, variously called the spring's torsion coefficient , torsion elastic modulus , rate , or just spring constant , equal to the change in torque ...
In 1820, the French engineer A. Duleau derived analytically that the torsion constant of a beam is identical to the second moment of area normal to the section J zz, which has an exact analytic equation, by assuming that a plane section before twisting remains planar after twisting, and a diameter remains a straight line.
A twist is a screw used to represent the velocity of a rigid body as an angular velocity around an axis and a linear velocity along this axis. All points in the body have the same component of the velocity along the axis, however the greater the distance from the axis the greater the velocity in the plane perpendicular to this axis.
Since no triangle can have two obtuse angles, γ is an acute angle and the solution γ = arcsin D is unique. If b < c, the angle γ may be acute: γ = arcsin D or obtuse: γ ′ = 180° − γ. The figure on right shows the point C, the side b and the angle γ as the first solution, and the point C ′, side b ′ and the angle γ ′ as the ...
where is the torque exerted by the spring in newton-meters, and is the angle of twist from its equilibrium position in radians. κ {\displaystyle \kappa \,} is a constant with units of newton-meters / radian, variously called the spring's torsion coefficient , torsion elastic modulus , or just spring constant , equal to the torque required to ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The robot Jacobian results in a set of linear equations that relate the joint rates to the six-vector formed from the angular and linear velocity of the end-effector, known as a twist. Specifying the joint rates yields the end-effector twist directly. The inverse velocity problem seeks the joint rates that provide a specified end-effector twist.