Search results
Results From The WOW.Com Content Network
Class of decision problems which contains the hardest problems in NP. Each NP-complete problem has to be in NP. NP-easy At most as hard as NP, but not necessarily in NP. NP-equivalent Decision problems that are both NP-hard and NP-easy, but not necessarily in NP. NP-intermediate If P and NP are different, then there exist decision problems in ...
Variations on the Traveling salesman problem. The problem for graphs is NP-complete if the edge lengths are assumed integers. The problem for points on the plane is NP-complete with the discretized Euclidean metric and rectilinear metric. The problem is known to be NP-hard with the (non-discretized) Euclidean metric. [3]: ND22, ND23
Printable version; In other projects ... Category:NP-hard problems; ... Pages in category "NP-complete problems" The following 181 pages are in this category, out of ...
Euler diagram for P, NP, NP-complete, and NP-hard set of problems. Under the assumption that P ≠ NP, the existence of problems within NP but outside both P and NP-complete was established by Ladner. [1] In computational complexity theory, NP (nondeterministic polynomial time) is a complexity class used to classify decision problems.
Informally, an NP-complete problem is an NP problem that is at least as "tough" as any other problem in NP. NP-hard problems are those at least as hard as NP problems; i.e., all NP problems can be reduced (in polynomial time) to them. NP-hard problems need not be in NP; i.e., they need not have solutions verifiable in polynomial time.
The first complete class to be defined and the most well known is NP-complete, a class that contains many difficult-to-solve problems that arise in practice. Similarly, a problem hard for a class C is called C-hard, e.g. NP-hard. Normally, it is assumed that the reduction in question does not have higher computational complexity than the class ...
In computational complexity, an NP-complete (or NP-hard) problem is weakly NP-complete (or weakly NP-hard) if there is an algorithm for the problem whose running time is polynomial in the dimension of the problem and the magnitudes of the data involved (provided these are given as integers), rather than the base-two logarithms of their magnitudes.
Therefore, the longest path problem is NP-hard. The question "does there exist a simple path in a given graph with at least k edges" is NP-complete. [2] In weighted complete graphs with non-negative edge weights, the weighted longest path problem is the same as the Travelling salesman path problem, because the longest path always includes all ...