Search results
Results From The WOW.Com Content Network
They model joint axes: a revolute joint makes any connected rigid body rotate about the line of its axis; a prismatic joint makes the connected rigid body translate along its axis line. They model edges of the polyhedral objects used in many task planners or sensor processing modules.
It is a robot whose arm has at least three rotary joints. Parallel robot: One use is a mobile platform handling cockpit flight simulators. It is a robot whose arms have concurrent prismatic or rotary joints. Anthropomorphic robot: It is shaped in a way that resembles a human hand, i.e. with independent fingers and thumbs.
A prismatic joint is a one-degree-of-freedom kinematic pair [1] which constrains the motion of two bodies to sliding along a common axis, without rotation; for this reason it is often called a slider (as in the slider-crank linkage) or a sliding pair. They are often utilized in hydraulic and pneumatic cylinders. [2]
Repeated joints may be summarized by their number; so that joint notation for the SCARA robot can also be written 2RP for example. Joint notation for the parallel Gough-Stewart mechanism is 6-UPS or 6(UPS) indicating that it is composed of six identical serial limbs, each one composed of a universal U, active prismatic P and spherical S joint.
Cartesian coordinate robots are controlled by mutually perpendicular active prismatic P joints that are aligned with the X, Y, Z axes of a Cartesian coordinate system. [ 6 ] [ 7 ] Although not strictly ‘robots’, other types of manipulators , such as computer numerically controlled (CNC) machines, 3D printers or pen plotters , also have the ...
A body is usually considered to be a rigid or flexible part of a mechanical system (not to be confused with the human body). An example of a body is the arm of a robot, a wheel or axle in a car or the human forearm. A link is the connection of two or more bodies, or a body with the ground.
A slider-crank linkage is a four-bar linkage with three revolute joints and one prismatic, or sliding, joint. The rotation of the crank drives the linear movement the slider, or the expansion of gases against a sliding piston in a cylinder can drive the rotation of the crank.
The first industrial robot, [1] Unimate, was invented in the 1950s. Its control axes correspond to a spherical coordinate system, with RRP joint topology composed of two revolute R joints in series with a prismatic P joint. Most industrial robots today are articulated robots composed of a serial chain of revolute R joints RRRRRR.