When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Predictive modelling - Wikipedia

    en.wikipedia.org/wiki/Predictive_modelling

    Predictive modelling uses statistics to predict outcomes. [1] Most often the event one wants to predict is in the future, but predictive modelling can be applied to any type of unknown event, regardless of when it occurred. For example, predictive models are often used to detect crimes and identify suspects, after the crime has taken place. [2]

  3. Predictive analytics - Wikipedia

    en.wikipedia.org/wiki/Predictive_analytics

    For example, identifying suspects after a crime has been committed, or credit card fraud as it occurs. [4] The core of predictive analytics relies on capturing relationships between explanatory variables and the predicted variables from past occurrences, and exploiting them to predict the unknown outcome. It is important to note, however, that ...

  4. Predicted outcome value theory - Wikipedia

    en.wikipedia.org/wiki/Predicted_outcome_value_theory

    Predicted outcome value theory is an alternative to uncertainty reduction theory, which Charles R. Berger and Richard J. Calabrese introduced in 1975. Uncertainty reduction theory states that the driving force in initial interactions is to collect information to predict attitudes and behaviors for future relationship development.

  5. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    Regression models predict a value of the Y variable given known values of the X variables. Prediction within the range of values in the dataset used for model-fitting is known informally as interpolation. Prediction outside this range of the data is known as extrapolation. Performing extrapolation relies strongly on the regression assumptions.

  6. Decision tree learning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_learning

    The recursion is completed when the subset at a node has all the same values of the target variable, or when splitting no longer adds value to the predictions. This process of top-down induction of decision trees (TDIDT) [5] is an example of a greedy algorithm, and it is by far the most common strategy for learning decision trees from data. [6]

  7. Logistic regression - Wikipedia

    en.wikipedia.org/wiki/Logistic_regression

    Logistic regression is used in various fields, including machine learning, most medical fields, and social sciences. For example, the Trauma and Injury Severity Score (), which is widely used to predict mortality in injured patients, was originally developed by Boyd et al. using logistic regression. [6]

  8. Forecasting - Wikipedia

    en.wikipedia.org/wiki/Forecasting

    Forecasting is the process of making predictions based on past and present data. Later these can be compared with what actually happens. For example, a company might estimate their revenue in the next year, then compare it against the actual results creating a variance actual analysis. Prediction is a similar but more general term.

  9. Trend analysis - Wikipedia

    en.wikipedia.org/wiki/Trend_analysis

    In project management, trend analysis is a mathematical technique that uses historical results to predict future outcome. This is achieved by tracking variances in cost and schedule performance. This is achieved by tracking variances in cost and schedule performance.