When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Tangent circles - Wikipedia

    en.wikipedia.org/wiki/Tangent_circles

    In geometry, tangent circles (also known as kissing circles) are circles in a common plane that intersect in a single point. There are two types of tangency : internal and external. Many problems and constructions in geometry are related to tangent circles; such problems often have real-life applications such as trilateration and maximizing the ...

  3. Power of a point - Wikipedia

    en.wikipedia.org/wiki/Power_of_a_point

    All tangent circles to the given circles can be found by varying line . Positions of the centers Circles tangent to two circles. If is the center and the radius of the circle, that is tangent to the given circles at the points ,, then:

  4. Tangent lines to circles - Wikipedia

    en.wikipedia.org/wiki/Tangent_lines_to_circles

    A general Apollonius problem can be transformed into the simpler problem of circle tangent to one circle and two parallel lines (itself a special case of the LLC special case). To accomplish this, it suffices to scale two of the three given circles until they just touch, i.e., are tangent.

  5. Special cases of Apollonius' problem - Wikipedia

    en.wikipedia.org/wiki/Special_cases_of_Apollonius...

    A circle is tangent to a point if it passes through the point, and tangent to a line if they intersect at a single point P or if the line is perpendicular to a radius drawn from the circle's center to P. Circles tangent to two given points must lie on the perpendicular bisector. Circles tangent to two given lines must lie on the angle bisector ...

  6. Tangent - Wikipedia

    en.wikipedia.org/wiki/Tangent

    The tangent line to a point on a differentiable curve can also be thought of as a tangent line approximation, the graph of the affine function that best approximates the original function at the given point. [3] Similarly, the tangent plane to a surface at a given point is the plane that "just touches" the

  7. Descartes' theorem - Wikipedia

    en.wikipedia.org/wiki/Descartes'_theorem

    Kissing circles. Given three mutually tangent circles (black), there are, in general, two possible answers (red) as to what radius a fourth tangent circle can have. In geometry, Descartes' theorem states that for every four kissing, or mutually tangent, circles, the radii of the circles satisfy a certain quadratic equation. By solving this ...

  8. Steiner chain - Wikipedia

    en.wikipedia.org/wiki/Steiner_chain

    For example, if the smaller given circle lies within the larger, the centers lie on an ellipse. This is true for any set of circles that are internally tangent to one given circle and externally tangent to the other; such systems of circles appear in the Pappus chain, the problem of Apollonius, and the three-dimensional Soddy's hexlet ...

  9. Ford circle - Wikipedia

    en.wikipedia.org/wiki/Ford_circle

    In mathematics, a Ford circle is a circle in the Euclidean plane, in a family of circles that are all tangent to the -axis at rational points. For each rational number p / q {\displaystyle p/q} , expressed in lowest terms, there is a Ford circle whose center is at the point ( p / q , 1 / ( 2 q 2 ) ) {\displaystyle (p/q,1/(2q^{2}))} and whose ...