When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/wiki/Jacobian_matrix_and...

    If m = n, then f is a function from R n to itself and the Jacobian matrix is a square matrix. We can then form its determinant, known as the Jacobian determinant. The Jacobian determinant is sometimes simply referred to as "the Jacobian". The Jacobian determinant at a given point gives important information about the behavior of f near that point.

  3. Jacobi's formula - Wikipedia

    en.wikipedia.org/wiki/Jacobi's_formula

    In matrix calculus, Jacobi's formula expresses the derivative of the determinant of a matrix A in terms of the adjugate of A and the derivative of A. [1]If A is a differentiable map from the real numbers to n × n matrices, then

  4. Jacobi eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Jacobi_eigenvalue_algorithm

    2. The upper triangle of the matrix S is destroyed while the lower triangle and the diagonal are unchanged. Thus it is possible to restore S if necessary according to for k := 1 to n−1 do ! restore matrix S for l := k+1 to n do S kl := S lk endfor endfor. 3. The eigenvalues are not necessarily in descending order.

  5. Jacobi method - Wikipedia

    en.wikipedia.org/wiki/Jacobi_method

    Each diagonal element is solved for, and an approximate value is plugged in. The process is then iterated until it converges. This algorithm is a stripped-down version of the Jacobi transformation method of matrix diagonalization. The method is named after Carl Gustav Jacob Jacobi.

  6. Broyden's method - Wikipedia

    en.wikipedia.org/wiki/Broyden's_method

    Newton's method for solving f(x) = 0 uses the Jacobian matrix, J, at every iteration. However, computing this Jacobian can be a difficult and expensive operation; for large problems such as those involving solving the Kohn–Sham equations in quantum mechanics the number of variables can be in the hundreds of thousands. The idea behind Broyden ...

  7. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...

  8. Propagation of uncertainty - Wikipedia

    en.wikipedia.org/wiki/Propagation_of_uncertainty

    That is, the Jacobian of the function is used to transform the rows and columns of the variance-covariance matrix of the argument. Note this is equivalent to the matrix expression for the linear case with J = A {\displaystyle \mathrm {J=A} } .

  9. Lyapunov exponent - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_exponent

    The Lyapunov exponents describe the behavior of vectors in the tangent space of the phase space and are defined from the Jacobian matrix = | this Jacobian defines the evolution of the tangent vectors, given by the matrix , via the equation ˙ = with the initial condition () =.