Ad
related to: linear transformation examples
Search results
Results From The WOW.Com Content Network
A specific application of linear maps is for geometric transformations, such as those performed in computer graphics, where the translation, rotation and scaling of 2D or 3D objects is performed by the use of a transformation matrix. Linear mappings also are used as a mechanism for describing change: for example in calculus correspond to ...
In linear algebra, linear transformations can be represented by matrices.If is a linear transformation mapping to and is a column vector with entries, then there exists an matrix , called the transformation matrix of , [1] such that: = Note that has rows and columns, whereas the transformation is from to .
A geometric rotation transforms lines to lines, and preserves ratios of distances between points. From these properties it can be shown that a rotation is a linear transformation of the vectors, and thus can be written in matrix form, Qp. The fact that a rotation preserves, not just ratios, but distances themselves, is stated as
The definitions of eigenvalue and eigenvectors of a linear transformation T remains valid even if the underlying vector space is an infinite-dimensional Hilbert or Banach space. A widely used class of linear transformations acting on infinite-dimensional spaces are the differential operators on function spaces.
A linear isometry also necessarily preserves angles, therefore a linear isometry transformation is a conformal linear transformation. Examples. A linear map from to itself is an isometry (for the dot product) if and only if its matrix is unitary. [10] [11] [12] [13]
An example of such linear fractional transformation is the Cayley transform, which was originally defined on the 3 × 3 real matrix ring. Linear fractional transformations are widely used in various areas of mathematics and its applications to engineering, such as classical geometry , number theory (they are used, for example, in Wiles's proof ...
An example is the linear map that takes any point with coordinates (,) to the point (+,). In ... This geometric transformation is a linear transformation of ...
Toggle Examples subsection. 3.1 Unbounded linear operators. ... In functional analysis and operator theory, a bounded linear operator is a linear transformation: ...