When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Four-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Four-dimensional_space

    Four-dimensional space (4D) is the mathematical extension of the concept of three-dimensional space (3D). Three-dimensional space is the simplest possible abstraction of the observation that one needs only three numbers, called dimensions, to describe the sizes or locations of objects in the everyday world.

  3. Tesseract - Wikipedia

    en.wikipedia.org/wiki/Tesseract

    The regular complex polytope 4 {4} 2, , in has a real representation as a tesseract or 4-4 duoprism in 4-dimensional space. 4 {4} 2 has 16 vertices, and 8 4-edges. Its symmetry is 4 [4] 2, order 32. It also has a lower symmetry construction, , or 4 {}× 4 {}, with symmetry 4 [2] 4, order 16. This is the symmetry if the red and blue 4-edges are ...

  4. Regular 4-polytope - Wikipedia

    en.wikipedia.org/wiki/Regular_4-polytope

    The Euler characteristic for all 4-polytopes is zero, we have the 4-dimensional analogue of Euler's polyhedral formula: + = where N k denotes the number of k-faces in the polytope (a vertex is a 0-face, an edge is a 1-face, etc.).

  5. Rotations in 4-dimensional Euclidean space - Wikipedia

    en.wikipedia.org/wiki/Rotations_in_4-dimensional...

    In mathematics, the group of rotations about a fixed point in four-dimensional Euclidean space is denoted SO(4). The name comes from the fact that it is the special orthogonal group of order 4. In this article rotation means rotational displacement .

  6. 4-polytope - Wikipedia

    en.wikipedia.org/wiki/4-polytope

    [4] The two-dimensional analogue of a 4-polytope is a polygon, and the three-dimensional analogue is a polyhedron. Topologically 4-polytopes are closely related to the uniform honeycombs, such as the cubic honeycomb, which tessellate 3-space; similarly the 3D cube is related to the infinite 2D square tiling.

  7. 24-cell honeycomb - Wikipedia

    en.wikipedia.org/wiki/24-cell_honeycomb

    In four-dimensional Euclidean geometry, the 24-cell honeycomb, or icositetrachoric honeycomb is a regular space-filling tessellation (or honeycomb) of 4-dimensional Euclidean space by regular 24-cells. It can be represented by Schläfli symbol {3,4,3,3}. The dual tessellation by regular 16-cell honeycomb has Schläfli symbol {3

  8. History of quaternions - Wikipedia

    en.wikipedia.org/wiki/History_of_quaternions

    Under the modern understanding, any quaternion is a vector in four-dimensional space. (Hamilton's vectors lie in the subspace with scalar part zero.) Since quaternions demand their readers to imagine four dimensions, there is a metaphysical aspect to their invocation. Quaternions are a philosophical object. Setting quaternions before freshmen ...

  9. 5-cell - Wikipedia

    en.wikipedia.org/wiki/5-cell

    In geometry, the 5-cell is the convex 4-polytope with Schläfli symbol {3,3,3}. It is a 5-vertex four-dimensional object bounded by five tetrahedral cells. It is also known as a C 5, hypertetrahedron, pentachoron, [1] pentatope, pentahedroid, [2] tetrahedral pyramid, or 4-simplex (Coxeter's polytope), [3] the simplest possible convex 4-polytope, and is analogous to the tetrahedron in three ...