Ads
related to: world's hardest easy geometry problem solutionstudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
The conjecture is that there is a simple way to tell whether such equations have a finite or infinite number of rational solutions. More specifically, the Millennium Prize version of the conjecture is that, if the elliptic curve E has rank r , then the L -function L ( E , s ) associated with it vanishes to order r at s = 1 .
In 2015, an anonymous Japanese woman using the pen name "aerile re" published the first known method (the method of 3 circumcenters) to construct a proof in elementary geometry for a special class of adventitious quadrangles problem. [7] [8] [9] This work solves the first of the three unsolved problems listed by Rigby in his 1978 paper. [5]
Goldbach’s Conjecture. One of the greatest unsolved mysteries in math is also very easy to write. Goldbach’s Conjecture is, “Every even number (greater than two) is the sum of two primes ...
The “Millennium Problems” are seven infamously intractable math problems laid out in the year 2000 by the prestigious Clay Institute, each with $1 million attached as payment for a solution.
For premium support please call: 800-290-4726 more ways to reach us
That would mean there is at least one non-zero solution (a, b, c, n) (with all numbers rational and n > 2 and prime) to a n + b n = c n. 2 Ribet's theorem (using Frey and Serre's work) shows that using the solution (a, b, c, n), we can create a semistable elliptic Frey curve (which we will call E) which is never modular.
Bellman's lost-in-a-forest problem is an unsolved minimization problem in geometry, originating in 1955 by the American applied mathematician Richard E. Bellman. [1] The problem is often stated as follows: "A hiker is lost in a forest whose shape and dimensions are precisely known to him.