Search results
Results From The WOW.Com Content Network
The average rate of energy captured by global photosynthesis is approximately 130 terawatts, [6] [7] [8] which is about eight times the total power consumption of human civilization. [9] Photosynthetic organisms also convert around 100–115 billion tons (91–104 Pg petagrams , or billions of metric tons), of carbon into biomass per year.
For example, most plants are photolithoautotrophic, since they use light as an energy source, water as electron donor, and CO 2 as a carbon source. All animals and fungi are chemoorganoheterotrophic , since they use organic substances both as chemical energy sources and as electron/hydrogen donors and carbon sources.
Cyanobacteria is the only prokaryotic group that performs oxygenic photosynthesis. Anoxygenic photosynthetic bacteria use PSI- and PSII-like photosystems, which are pigment protein complexes for capturing light. [5] Both of these photosystems use bacteriochlorophyll. There are multiple hypotheses for how oxygenic photosynthesis evolved.
Photosynthesis is a process where light is absorbed or harvested by pigment protein complexes which are able to turn sunlight into energy. [5] Absorption of a photon by a molecule takes place when pigment protein complexes harvest sunlight leading to electronic excitation delivered to the reaction centre where the process of charge separation can take place.
The following is a breakdown of the energetics of the photosynthesis process from Photosynthesis by Hall and Rao: [6]. Starting with the solar spectrum falling on a leaf, 47% lost due to photons outside the 400–700 nm active range (chlorophyll uses photons between 400 and 700 nm, extracting the energy of one 700 nm photon from each one)
Reaction centers are present in all green plants, algae, and many bacteria.A variety in light-harvesting complexes exist across the photosynthetic species. Green plants and algae have two different types of reaction centers that are part of larger supercomplexes known as P700 in Photosystem I and P680 in Photosystem II.
2 O → glyceraldehyde-3-phosphate (G3P) + 6 NADP + + 9 ADP + 8 P i (P i = inorganic phosphate) Hexose (six-carbon) sugars are not products of the Calvin cycle. Although many texts list a product of photosynthesis as C 6 H 12 O 6, this is mainly for convenience to match the equation of aerobic respiration, where six-carbon sugars are oxidized ...
Photosynthesis is the main means by which plants, algae and many bacteria produce organic compounds and oxygen from carbon dioxide and water (green arrow). An autotroph is an organism that can convert abiotic sources of energy into energy stored in organic compounds , which can be used by other organisms .