When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Residual neural network - Wikipedia

    en.wikipedia.org/wiki/Residual_neural_network

    A residual block in a deep residual network. Here, the residual connection skips two layers. A residual neural network (also referred to as a residual network or ResNet) [1] is a deep learning architecture in which the layers learn residual functions with reference to the layer inputs.

  3. Vapnik–Chervonenkis dimension - Wikipedia

    en.wikipedia.org/wiki/Vapnik–Chervonenkis...

    Each intermediate node gets as input a weighted sum of the outputs of the nodes at its incoming edges, where the weights are the weights on the edges. Each intermediate node outputs a certain increasing function of its input, such as the sign function or the sigmoid function. This function is called the activation function.

  4. Types of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Types_of_artificial_neural...

    The Euclidean distance is computed from the new point to the center of each neuron, and a radial basis function (RBF, also called a kernel function) is applied to the distance to compute the weight (influence) for each neuron. The radial basis function is so named because the radius distance is the argument to the function. Weight = RBF(distance)

  5. Activation function - Wikipedia

    en.wikipedia.org/wiki/Activation_function

    The activation function of a node in an artificial neural network is a function that calculates the output of the node based on its individual inputs and their weights. Nontrivial problems can be solved using only a few nodes if the activation function is nonlinear .

  6. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    A specific recurrent architecture with rational-valued weights (as opposed to full precision real number-valued weights) has the power of a universal Turing machine, [211] using a finite number of neurons and standard linear connections. Further, the use of irrational values for weights results in a machine with super-Turing power.

  7. Fine-tuning (deep learning) - Wikipedia

    en.wikipedia.org/wiki/Fine-tuning_(deep_learning)

    Fine-tuning can degrade a model's robustness to distribution shifts. [10] [11] One mitigation is to linearly interpolate a fine-tuned model's weights with the weights of the original model, which can greatly increase out-of-distribution performance while largely retaining the in-distribution performance of the fine-tuned model.

  8. Multiplicative weight update method - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_Weight...

    The multiplicative weights update method is an algorithmic technique most commonly used for decision making and prediction, and also widely deployed in game theory and algorithm design. The simplest use case is the problem of prediction from expert advice, in which a decision maker needs to iteratively decide on an expert whose advice to follow.

  9. Vanishing gradient problem - Wikipedia

    en.wikipedia.org/wiki/Vanishing_gradient_problem

    Weight initialization [ edit ] Kumar suggested that the distribution of initial weights should vary according to activation function used and proposed to initialize the weights in networks with the logistic activation function using a Gaussian distribution with a zero mean and a standard deviation of 3.6/sqrt(N) , where N is the number of ...