When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Asymptote - Wikipedia

    en.wikipedia.org/wiki/Asymptote

    Asymptotes are used in procedures of curve sketching. An asymptote serves as a guide line to show the behavior of the curve towards infinity. [10] In order to get better approximations of the curve, curvilinear asymptotes have also been used [11] although the term asymptotic curve seems to be preferred. [12]

  3. Sigmoid function - Wikipedia

    en.wikipedia.org/wiki/Sigmoid_function

    A sigmoid function is constrained by a pair of horizontal asymptotes as . A sigmoid function is convex for values less than a particular point, and it is concave for values greater than that point: in many of the examples here, that point is 0.

  4. Asymptotology - Wikipedia

    en.wikipedia.org/wiki/Asymptotology

    In physics and other fields of science, one frequently comes across problems of an asymptotic nature, such as damping, orbiting, stabilization of a perturbed motion, etc. . Their solutions lend themselves to asymptotic analysis (perturbation theory), which is widely used in modern applied mathematics, mechanics and phy

  5. Asymptotic analysis - Wikipedia

    en.wikipedia.org/wiki/Asymptotic_analysis

    An asymptote is a straight line that a curve approaches but never meets or crosses. Informally, one may speak of the curve meeting the asymptote "at infinity" although this is not a precise definition. In the equation =, y becomes arbitrarily small in magnitude as x increases.

  6. Asymptotic curve - Wikipedia

    en.wikipedia.org/wiki/Asymptotic_curve

    The asymptotic directions are the same as the asymptotes of the hyperbola of the Dupin indicatrix through a hyperbolic point, or the unique asymptote through a parabolic point. [1] An asymptotic direction is a direction along which the normal curvature is zero: take the plane spanned by the direction and the surface's normal at that point. The ...

  7. Truncus (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Truncus_(mathematics)

    The basic truncus y = 1 / x 2 has asymptotes at x = 0 and y = 0, and every other truncus can be obtained from this one through a combination of translations and dilations. For the general truncus form above, the constant a dilates the graph by a factor of a from the x -axis; that is, the graph is stretched vertically when a > 1 and compressed ...

  8. Folium of Descartes - Wikipedia

    en.wikipedia.org/wiki/Folium_of_Descartes

    The folium of Descartes (green) with asymptote (blue) when = In geometry , the folium of Descartes (from Latin folium ' leaf '; named for René Descartes ) is an algebraic curve defined by the implicit equation x 3 + y 3 − 3 a x y = 0. {\displaystyle x^{3}+y^{3}-3axy=0.}

  9. Generalised logistic function - Wikipedia

    en.wikipedia.org/wiki/Generalised_logistic_function

    A particular case of the generalised logistic function is: = (+ ()) /which is the solution of the Richards's differential equation (RDE): ′ = (()) with initial condition