Search results
Results From The WOW.Com Content Network
Mitochondrial DNA (mtDNA and mDNA) is the DNA located in the mitochondria organelles in a eukaryotic cell that converts chemical energy from food into adenosine triphosphate (ATP). Mitochondrial DNA is a small portion of the DNA contained in a eukaryotic cell; most of the DNA is in the cell nucleus , and, in plants and algae, the DNA also is ...
Mitochondrial diseases range in severity from asymptomatic to fatal, and are most commonly due to inherited rather than acquired mutations of mitochondrial DNA. A given mitochondrial mutation can cause various diseases depending on the severity of the problem in the mitochondria and the tissue the affected mitochondria are in.
The near-absence of genetic recombination in mitochondrial DNA makes it a useful source of information for studying population genetics and evolutionary biology. [152] Because all the mitochondrial DNA is inherited as a single unit, or haplotype, the relationships between mitochondrial DNA from different individuals can be represented as a gene ...
Mitochondrial biogenesis is the process by which cells increase mitochondrial numbers. [ 1 ] [ 2 ] It was first described by John Holloszy in the 1960s, when it was discovered that physical endurance training induced higher mitochondrial content levels, leading to greater glucose uptake by muscles. [ 3 ]
The mitochondrion is a component of a human cell, and contains its own DNA. Mitochondrial DNA usually has 16,569 base pairs (the number can vary slightly depending on addition or deletion mutations) [24] and is much smaller than the human genome DNA which has 3.2 billion base pairs. Mitochondrial DNA is transmitted from mother to child, as it ...
NUMT insertion into the nuclear genome and its persistence in the nuclear genome is initiated by the physical delivery of mitochondrial DNA to the nucleus. [5] This step follows by the mtDNA integration into the genome through a non-homologous end joining mechanism during the double-strand break (DSB) repair process as envisioned by studying Saccharomyces cerevisiae, [13] [29] and terminates ...
Mitochondrial matrix has a pH of about 7.8, which is higher than the pH of the intermembrane space of the mitochondria, which is around 7.0–7.4. [5] Mitochondrial DNA was discovered by Nash and Margit in 1963. One to many double stranded mainly circular DNA is present in mitochondrial matrix. Mitochondrial DNA is 1% of total DNA of a cell.
As a result, mtDNA become clonal copies of each other, except when a new mutation arises. As a result, mtDNA does not have pitfalls of autosomal loci when studied in interbreeding groups. Another advantage of mtDNA is that the hyper-variable regions evolve very quickly; this shows that certain regions of mitochondrial DNA approach neutrality.