When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Specific activity - Wikipedia

    en.wikipedia.org/wiki/Specific_activity

    The unit of activity is the becquerel (symbol Bq), which is defined equivalent to reciprocal seconds (symbol s-1). The older, non-SI unit of activity is the curie (Ci), which is 3.7 × 10 10 radioactive decays per second. Another unit of activity is the rutherford, which is defined as 1 × 10 6 radioactive decays per second.

  3. Curie (unit) - Wikipedia

    en.wikipedia.org/wiki/Curie_(unit)

    The activity of a sample decreases with time because of decay. The rules of radioactive decay may be used to convert activity to an actual number of atoms. They state that 1 Ci of radioactive atoms would follow the expression N (atoms) × λ (s −1) = 1 Ci = 3.7 × 10 10 Bq, and so N = 3.7 × 10 10 Bq / λ, where λ is the decay constant in s ...

  4. Becquerel - Wikipedia

    en.wikipedia.org/wiki/Becquerel

    The following table shows radiation quantities in SI and non-SI units. W R (formerly 'Q' factor) is a factor that scales the biological effect for different types of radiation, relative to x-rays (e.g. 1 for beta radiation, 20 for alpha radiation, and a complicated function of energy for neutrons). In general, conversion between rates of ...

  5. Radioactive decay - Wikipedia

    en.wikipedia.org/wiki/Radioactive_decay

    Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is considered radioactive. Three of the most common types of decay are alpha, beta, and gamma decay.

  6. Decay energy - Wikipedia

    en.wikipedia.org/wiki/Decay_energy

    Types of radioactive decay include gamma ray; beta decay (decay energy is divided between the emitted electron and the neutrino which is emitted at the same time) alpha decay; The decay energy is the mass difference Δm between the parent and the daughter atom and particles. It is equal to the energy of radiation E.

  7. Radioactivity in the life sciences - Wikipedia

    en.wikipedia.org/wiki/Radioactivity_in_the_life...

    Not all molecules in the solution have a P-32 on the last (i.e., gamma) phosphate: the "specific activity" gives the radioactivity concentration and depends on the radionuclei's half-life. If every molecule were labelled, the maximum theoretical specific activity is obtained that for P-32 is 9131 Ci/mmol.

  8. Transient equilibrium - Wikipedia

    en.wikipedia.org/wiki/Transient_equilibrium

    The activity of the daughter is given by the Bateman equation: = () + (), where and are the activity of the parent and daughter, respectively. and are the half-lives (inverses of reaction rates in the above equation modulo ln(2)) of the parent and daughter, respectively, and BR is the branching ratio.

  9. Bateman equation - Wikipedia

    en.wikipedia.org/wiki/Bateman_equation

    In nuclear physics, the Bateman equation is a mathematical model describing abundances and activities in a decay chain as a function of time, based on the decay rates and initial abundances. The model was formulated by Ernest Rutherford in 1905 [ 1 ] and the analytical solution was provided by Harry Bateman in 1910.