Search results
Results From The WOW.Com Content Network
In astrodynamics or celestial mechanics a parabolic trajectory is a Kepler orbit with the eccentricity equal to 1 and is an unbound orbit that is exactly on the border between elliptical and hyperbolic. When moving away from the source it is called an escape orbit, otherwise a capture orbit.
A value of 0 is a circular orbit, values between 0 and 1 form an elliptic orbit, 1 is a parabolic escape orbit (or capture orbit), and greater than 1 is a hyperbola. The term derives its name from the parameters of conic sections, as every Kepler orbit is a conic section.
An elliptic Kepler orbit with an eccentricity of 0.7, a parabolic Kepler orbit and a hyperbolic Kepler orbit with an eccentricity of 1.3. The distance to the focal point is a function of the polar angle relative to the horizontal line as given by the equation ()
This is an elliptic orbit with semi-minor axis = 0 and eccentricity = 1. Although the eccentricity is 1, this is not a parabolic orbit. Radial parabolic orbit: An open parabolic orbit where the object is moving at the escape velocity. Radial hyperbolic orbit: An open hyperbolic orbit where the object is moving at greater than the escape ...
An animation showing a low eccentricity orbit (near-circle, in red), and a high eccentricity orbit (ellipse, in purple). In celestial mechanics, an orbit (also known as orbital revolution) is the curved trajectory of an object [1] such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such ...
Hohmann transfer orbit, 2, from an orbit (1) to a higher orbit (3) A Hohmann transfer orbit is the simplest maneuver which can be used to move a spacecraft from one altitude to another. Two burns are required: the first to send the craft into the elliptical transfer orbit, and a second to circularize the target orbit.
Barker's equation is used for parabolic trajectories (=). When =, the orbit is circular. Increasing causes the circle to become elliptical. When =, there are four possibilities: a parabolic trajectory,
Parabolic (1) and hyperbolic (3) orbits are escape orbits, whereas elliptical and circular orbits (2) are captive. The orbital plane of a revolving body is the geometric plane in which its orbit lies. Three non-collinear points in space suffice to determine an orbital plane.