Ads
related to: discrete mathematics johnsonbaugh pdf answersstudy.com has been visited by 100K+ users in the past month
amazon.com has been visited by 1M+ users in the past month
smartsolve.ai has been visited by 10K+ users in the past month
Search results
Results From The WOW.Com Content Network
Richard F. Johnsonbaugh (born 1941) [1] is an American mathematician and computer scientist. His interests include discrete mathematics and the history of mathematics. He is the author of several textbooks. Johnsonbaugh earned a bachelor's degree in mathematics from Yale University, and then moved to the University of Oregon for graduate study. [2]
Discrete mathematics is the study of mathematical structures that can be considered "discrete" (in a way analogous to discrete variables, having a bijection with the set of natural numbers) rather than "continuous" (analogously to continuous functions).
Discrete mathematics is the study of mathematical structures that are fundamentally discrete rather than continuous.In contrast to real numbers that have the property of varying "smoothly", the objects studied in discrete mathematics – such as integers, graphs, and statements in logic [1] – do not vary smoothly in this way, but have distinct, separated values. [2]
Discrete mathematics, also called finite mathematics, is the study of mathematical structures that are fundamentally discrete, in the sense of not supporting or requiring the notion of continuity. Most, if not all, of the objects studied in finite mathematics are countable sets , such as integers , finite graphs , and formal languages .
Numerical analysis is the study of algorithms that use numerical approximation (as opposed to general symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). [25] Modern numerical analysis does not seek exact answers, because exact answers are often impossible to obtain in practice.
Kawasaki's theorem (mathematics of paper folding) Kelvin's circulation theorem ; Kempf–Ness theorem (algebraic geometry) Kepler conjecture (discrete geometry) Kharitonov's theorem (control theory) Khinchin's theorem (probability) Killing–Hopf theorem (Riemannian geometry) Kinoshita–Lee–Nauenberg theorem (quantum field theory)
Ad
related to: discrete mathematics johnsonbaugh pdf answers