Search results
Results From The WOW.Com Content Network
The notochord forms during gastrulation and soon after induces the formation of the neural plate (neurulation), synchronizing the development of the neural tube. On the ventral aspect of the neural groove, an axial thickening of the endoderm takes place. (In bipedal chordates, e.g. humans, this surface is properly referred to as the anterior ...
The notochord plate separates and forms the solid notochord. [4] The folding of the neural tube to form an actual tube does not occur all at once. Instead, it begins approximately at the level of the fourth somite at Carnegie stage 9 (around embryonic day 20 in humans). The lateral edges of the neural plate touch in the midline and join together.
Somitogenesis is the process by which somites form. Somites are bilaterally paired blocks of paraxial mesoderm that form along the anterior-posterior axis of the developing embryo in segmented animals. In vertebrates, somites give rise to skeletal muscle, cartilage, tendons, endothelium, and dermis.
The process by which neural tube is performed from the ectoderm is called neurulation. The evolutionary explanation to this adaptation from a solid cord to a hollow tube is unknown. In vertebrates, the dorsal nerve cord (and the subsequent neural tube) gives rise to the brain (via vesicular enlargements at the rostral end) and spinal cord ...
Neuroectoderm overlying the notochord develops into the neural plate in response to a diffusible signal produced by the notochord. The remainder of the ectoderm gives rise to the epidermis. The ability of the mesoderm to convert the overlying ectoderm into neural tissue is called neural induction.
In higher vertebrates such as humans, the segmental plates are laid down during the process of gastrulation and the segmental plates appear on both sides of the mid-line neural epithelium. Later, the process of neurulation occurs in the mid-line and the segmental plates proceed to the side of the neural tube and notochord.
ventral floor of the notochordal process fuses with endoderm. The notochord will form the nucleus pulposus of intervertebral discs. There is some discussion as to whether these cells contributed from the notochord are replaced by others from the adjacent mesoderm. It gives rise to the notochordal process, which later becomes the notochord.
The chorda-mesoderm develops into the notochord. The intermediate mesoderm develops into kidneys and gonads. The paraxial mesoderm develops into cartilage, skeletal muscle, and dermis. The lateral plate mesoderm develops into the circulatory system (including the heart and spleen), the wall of the gut, and wall of the human body. [11]