When.com Web Search

  1. Ad

    related to: probability at least one calculator with two variables and 3

Search results

  1. Results From The WOW.Com Content Network
  2. Complementary event - Wikipedia

    en.wikipedia.org/wiki/Complementary_event

    One may resolve this overlap by the principle of inclusion-exclusion, or, in this case, by simply finding the probability of the complementary event and subtracting it from 1, thus: Pr(at least one "1") = 1 − Pr(no "1"s)

  3. Birthday problem - Wikipedia

    en.wikipedia.org/wiki/Birthday_problem

    From a permutations perspective, let the event A be the probability of finding a group of 23 people without any repeated birthdays. Where the event B is the probability of finding a group of 23 people with at least two people sharing same birthday, P(B) = 1 − P(A).

  4. Mutual exclusivity - Wikipedia

    en.wikipedia.org/wiki/Mutual_exclusivity

    The probability that at least one of the events will occur is equal to one. [4] For example, there are theoretically only two possibilities for flipping a coin. Flipping a head and flipping a tail are collectively exhaustive events, and there is a probability of one of flipping either a head or a tail.

  5. Independence (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Independence_(probability...

    Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes.Two events are independent, statistically independent, or stochastically independent [1] if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds.

  6. Bernoulli trial - Wikipedia

    en.wikipedia.org/wiki/Bernoulli_trial

    Graphs of probability P of not observing independent events each of probability p after n Bernoulli trials vs np for various p.Three examples are shown: Blue curve: Throwing a 6-sided die 6 times gives a 33.5% chance that 6 (or any other given number) never turns up; it can be observed that as n increases, the probability of a 1/n-chance event never appearing after n tries rapidly converges to 0.

  7. Monty Hall problem - Wikipedia

    en.wikipedia.org/wiki/Monty_Hall_problem

    A simple way to demonstrate that a switching strategy really does win two out of three times with the standard assumptions is to simulate the game with playing cards. [58] [59] Three cards from an ordinary deck are used to represent the three doors; one 'special' card represents the door with the car and two other cards represent the goat doors.

  8. Mutual information - Wikipedia

    en.wikipedia.org/wiki/Mutual_information

    In probability theory and information theory, the mutual information (MI) of two random variables is a measure of the mutual dependence between the two variables. More specifically, it quantifies the "amount of information" (in units such as shannons , nats or hartleys) obtained about one random variable by observing the other random variable.

  9. Likelihood function - Wikipedia

    en.wikipedia.org/wiki/Likelihood_function

    The parameter is the probability that a coin lands heads up ("H") when tossed. can take on any value within the range 0.0 to 1.0. For a perfectly fair coin, =. Imagine flipping a fair coin twice, and observing two heads in two tosses ("HH").