When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Ellipse - Wikipedia

    en.wikipedia.org/wiki/Ellipse

    The length of the chord through one focus, perpendicular to the major axis, is called the latus rectum. One half of it is the semi-latus rectum. A calculation shows: [4] = = (). The semi-latus rectum is equal to the radius of curvature at the vertices (see section curvature).

  3. Semi-major and semi-minor axes - Wikipedia

    en.wikipedia.org/wiki/Semi-major_and_semi-minor_axes

    The semi-minor axis is half of the minor axis. The minor axis is the longest line segment perpendicular to the major axis that connects two points on the ellipse's edge. The semi-minor axis b is related to the semi-major axis a through the eccentricity e and the semi-latus rectum, as follows:

  4. Conic section - Wikipedia

    en.wikipedia.org/wiki/Conic_section

    The principal axis is the line joining the foci of an ellipse or hyperbola, and its midpoint is the curve's center. A parabola has no center. The linear eccentricity (c) is the distance between the center and a focus. The latus rectum is the chord parallel to the directrix and passing through a focus; its half-length is the semi-latus rectum (ℓ).

  5. Hyperbola - Wikipedia

    en.wikipedia.org/wiki/Hyperbola

    The length of the chord through one of the foci, perpendicular to the major axis of the hyperbola, is called the latus rectum. One half of it is the semi-latus rectum. A calculation shows =. The semi-latus rectum may also be viewed as the radius of curvature at the vertices.

  6. Polar coordinate system - Wikipedia

    en.wikipedia.org/wiki/Polar_coordinate_system

    Ellipse, showing semi-latus rectum. ... is the semi-latus rectum (the ... The length of L is given by the following integral = ...

  7. Parabola - Wikipedia

    en.wikipedia.org/wiki/Parabola

    The latus rectum is defined similarly for the other two conics – the ellipse and the hyperbola. The latus rectum is the line drawn through a focus of a conic section parallel to the directrix and terminated both ways by the curve. For any case, is the radius of the osculating circle at the vertex. For a parabola, the semi-latus rectum, , is ...

  8. Eccentricity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Eccentricity_(mathematics)

    The eccentricity of an ellipse is, most simply, the ratio of the linear eccentricity c (distance between the center of the ellipse and each focus) to the length of the semimajor axis a. =. The eccentricity is also the ratio of the semimajor axis a to the distance d from the center to the directrix:

  9. Menaechmus - Wikipedia

    en.wikipedia.org/wiki/Menaechmus

    Menaechmus likely discovered the conic sections, that is, the ellipse, the parabola, and the hyperbola, as a by-product of his search for the solution to the Delian problem. [3] Menaechmus knew that in a parabola y 2 = L x, where L is a constant called the latus rectum , although he was not aware of the fact that any equation in two unknowns ...