Search results
Results From The WOW.Com Content Network
A fuzzy Mediawiki search for "angry emoticon" has as a suggested result "andré emotions" In computer science, approximate string matching (often colloquially referred to as fuzzy string searching) is the technique of finding strings that match a pattern approximately (rather than exactly).
You can use VLOOKUP with Google Sheets similar to how the search function is used to find information in Excel.
A simple and inefficient way to see where one string occurs inside another is to check at each index, one by one. First, we see if there is a copy of the needle starting at the first character of the haystack; if not, we look to see if there's a copy of the needle starting at the second character of the haystack, and so forth.
When an exact match cannot be found in the TM database for the text being translated, there is an option to search for a match that is less than exact; the translator sets the threshold of the fuzzy match to a percentage value less than 100%, and the database will then return any matches in its memory corresponding to that percentage.
In computer science, an algorithm for matching wildcards (also known as globbing) is useful in comparing text strings that may contain wildcard syntax. [1] Common uses of these algorithms include command-line interfaces, e.g. the Bourne shell [2] or Microsoft Windows command-line [3] or text editor or file manager, as well as the interfaces for some search engines [4] and databases. [5]
Regular expressions entered popular use from 1968 in two uses: pattern matching in a text editor [9] and lexical analysis in a compiler. [10] Among the first appearances of regular expressions in program form was when Ken Thompson built Kleene's notation into the editor QED as a means to match patterns in text files.
Prediction by partial matching (PPM) is an adaptive statistical data compression technique based on context modeling and prediction.PPM models use a set of previous symbols in the uncompressed symbol stream to predict the next symbol in the stream.
An approximate nearest neighbor search algorithm is allowed to return points whose distance from the query is at most times the distance from the query to its nearest points. The appeal of this approach is that, in many cases, an approximate nearest neighbor is almost as good as the exact one.