When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Oxidative phosphorylation - Wikipedia

    en.wikipedia.org/wiki/Oxidative_phosphorylation

    Oxidative phosphorylation uses these molecules and O 2 to produce ATP, which is used throughout the cell whenever energy is needed. During oxidative phosphorylation, electrons are transferred from the electron donors to a series of electron acceptors in a series of redox reactions ending in oxygen, whose reaction releases half of the total ...

  3. Cellular respiration - Wikipedia

    en.wikipedia.org/wiki/Cellular_respiration

    The ATP generated in this process is made by substrate-level phosphorylation, which does not require oxygen. Fermentation is less efficient at using the energy from glucose: only 2 ATP are produced per glucose, compared to the 38 ATP per glucose nominally produced by aerobic respiration. Glycolytic ATP, however, is produced more quickly.

  4. Electron transport chain - Wikipedia

    en.wikipedia.org/wiki/Electron_transport_chain

    This gradient is used by the F O F 1 ATP synthase complex to make ATP via oxidative phosphorylation. ATP synthase is sometimes described as Complex V of the electron transport chain. [10] The F O component of ATP synthase acts as an ion channel that provides for a proton flux back into the mitochondrial matrix. It is composed of a, b and c ...

  5. Bioenergetic systems - Wikipedia

    en.wikipedia.org/wiki/Bioenergetic_systems

    Oxidative phosphorylation – The last stage of the aerobic system produces the largest yield of ATP – a total of 34 ATP molecules. It is called oxidative phosphorylation because oxygen is the final acceptor of electrons and hydrogen ions (hence oxidative) and an extra phosphate is added to ADP to form ATP (hence phosphorylation).

  6. Carbohydrate catabolism - Wikipedia

    en.wikipedia.org/wiki/Carbohydrate_catabolism

    The last process in aerobic respiration is oxidative phosphorylation, also known as the electron transport chain. Here NADH and FADH 2 deliver their electrons to oxygen and protons at the inner membranes of the mitochondrion, facilitating the production of ATP. Oxidative phosphorylation contributes the majority of the ATP produced, compared to ...

  7. Aerobic organism - Wikipedia

    en.wikipedia.org/wiki/Aerobic_organism

    Facultative anaerobes use oxygen if it is available, but also have anaerobic methods of energy production. [7] Microaerophiles require oxygen for energy production, but are harmed by atmospheric concentrations of oxygen (21% O 2). [6] Aerotolerant anaerobes do not use oxygen but are not harmed by it. [6]

  8. Obligate anaerobe - Wikipedia

    en.wikipedia.org/wiki/Obligate_anaerobe

    4: Microaerophiles need oxygen because they cannot ferment or respire anaerobically. However, they are poisoned by high concentrations of oxygen. They gather in the upper part of the test tube but not the very top. 5: Aerotolerant organisms do not require oxygen and cannot utilise it even if present; they metabolise energy anaerobically. Unlike ...

  9. Dioxygen in biological reactions - Wikipedia

    en.wikipedia.org/wiki/Dioxygen_in_biological...

    Free oxygen is produced in the biosphere through photolysis (light-driven oxidation and splitting) of water during photosynthesis in cyanobacteria, green algae, and plants. During oxidative phosphorylation in cellular respiration, oxygen is reduced to water, thus closing the biological water-oxygen redox cycle.