When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hall's marriage theorem - Wikipedia

    en.wikipedia.org/wiki/Hall's_marriage_theorem

    A fractional matching in a graph is an assignment of non-negative weights to each edge, such that the sum of weights adjacent to each vertex is at most 1. A fractional matching is X-perfect if the sum of weights adjacent to each vertex is exactly 1. The following are equivalent for a bipartite graph G = (X+Y, E): [13] G admits an X-perfect ...

  3. Assignment problem - Wikipedia

    en.wikipedia.org/wiki/Assignment_problem

    There is also a constant s which is at most the cardinality of a maximum matching in the graph. The goal is to find a minimum-cost matching of size exactly s. The most common case is the case in which the graph admits a one-sided-perfect matching (i.e., a matching of size r), and s=r. Unbalanced assignment can be reduced to a balanced assignment.

  4. Perfect matching - Wikipedia

    en.wikipedia.org/wiki/Perfect_matching

    A perfect matching can only occur when the graph has an even number of vertices. A near-perfect matching is one in which exactly one vertex is unmatched. This can only occur when the graph has an odd number of vertices, and such a matching must be maximum. In the above figure, part (c) shows a near-perfect matching.

  5. Matching (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Matching_(graph_theory)

    A graph can only contain a perfect matching when the graph has an even number of vertices. A near-perfect matching is one in which exactly one vertex is unmatched. Clearly, a graph can only contain a near-perfect matching when the graph has an odd number of vertices, and near-perfect matchings are maximum matchings. In the above figure, part (c ...

  6. FKT algorithm - Wikipedia

    en.wikipedia.org/wiki/FKT_algorithm

    The sum of weighted perfect matchings can also be computed by using the Tutte matrix for the adjacency matrix in the last step. Kuratowski's theorem states that a finite graph is planar if and only if it contains no subgraph homeomorphic to K 5 (complete graph on five vertices) or K 3,3 (complete bipartite graph on two partitions of size three).

  7. Birkhoff polytope - Wikipedia

    en.wikipedia.org/wiki/Birkhoff_polytope

    The Birkhoff polytope B n (also called the assignment polytope, the polytope of doubly stochastic matrices, or the perfect matching polytope of the complete bipartite graph , [1]) is the convex polytope in R N (where N = n 2) whose points are the doubly stochastic matrices, i.e., the n × n matrices whose entries are non-negative real numbers and whose rows and columns each add up to 1.

  8. Dulmage–Mendelsohn decomposition - Wikipedia

    en.wikipedia.org/wiki/Dulmage–Mendelsohn...

    In graph theory, the Dulmage–Mendelsohn decomposition is a partition of the vertices of a bipartite graph into subsets, with the property that two adjacent vertices belong to the same subset if and only if they are paired with each other in a perfect matching of the graph.

  9. Kőnig's theorem (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Kőnig's_theorem_(graph...

    Kőnig had announced in 1914 and published in 1916 the results that every regular bipartite graph has a perfect matching, [11] and more generally that the chromatic index of any bipartite graph (that is, the minimum number of matchings into which it can be partitioned) equals its maximum degree [12] – the latter statement is known as Kőnig's ...