Search results
Results From The WOW.Com Content Network
An AA tree in computer science is a form of balanced tree used for storing and retrieving ordered data efficiently. AA trees are named after their originator, Swedish computer scientist Arne Andersson. [1] AA trees are a variation of the red–black tree, a form of binary search tree which supports efficient addition and deletion of entries ...
A binary heap is a heap data structure that takes the form of a binary tree. Binary heaps are a common way of implementing priority queues. [1]: 162–163 The binary heap was introduced by J. W. J. Williams in 1964 as a data structure for implementing heapsort. [2] A binary heap is defined as a binary tree with two additional constraints: [3]
Most algorithms and data structures for searching a dataset are based on the classical binary search algorithm, and generalizations such as the k-d tree or range tree work by interleaving the binary search algorithm over the separate coordinates and treating each spatial coordinate as an independent search constraint.
There are three primary categories of tree construction methods: top-down, bottom-up, and insertion methods. Top-down methods proceed by partitioning the input set into two (or more) subsets, bounding them in the chosen bounding volume, then keep partitioning (and bounding) recursively until each subset consists of only a single primitive (leaf nodes are reached).
The other cases of list labeling can be solved via balanced binary search trees.Consider , a binary search tree on S of height .We can label every node in the tree via a path label as follows: Let () be the sequence of left and right edges on the root-to-path, encoded as bits.
In probability theory, the Brownian tree, or Aldous tree, or Continuum Random Tree (CRT) [1] is a random real tree that can be defined from a Brownian excursion. The Brownian tree was defined and studied by David Aldous in three articles published in 1991 and 1993.
Hermann Minkowski's question mark function loosely resembles the Cantor function visually, appearing as a "smoothed out" form of the latter; it can be constructed by passing from a continued fraction expansion to a binary expansion, just as the Cantor function can be constructed by passing from a ternary expansion to a binary expansion. The ...