When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Median (geometry) - Wikipedia

    en.wikipedia.org/wiki/Median_(geometry)

    The triangle medians and the centroid.. In geometry, a median of a triangle is a line segment joining a vertex to the midpoint of the opposite side, thus bisecting that side. . Every triangle has exactly three medians, one from each vertex, and they all intersect at the triangle's cent

  3. Right triangle - Wikipedia

    en.wikipedia.org/wiki/Right_triangle

    Median of a right angle of a triangle Thales' theorem states that if B C {\displaystyle BC} is the diameter of a circle and A {\displaystyle A} is any other point on the circle, then A B C {\displaystyle \triangle ABC} is a right triangle with a right angle at A . {\displaystyle A.}

  4. Median triangle - Wikipedia

    en.wikipedia.org/wiki/Median_triangle

    The median triangle of a given (reference) triangle is a triangle, the sides of which are equal and parallel to the medians of its reference triangle. The area of the median triangle is of the area of its reference triangle, and the median triangle of the median triangle is similar to the reference triangle of the first median triangle with a ...

  5. Concurrent lines - Wikipedia

    en.wikipedia.org/wiki/Concurrent_lines

    In a triangle, four basic types of sets of concurrent lines are altitudes, angle bisectors, medians, and perpendicular bisectors: A triangle's altitudes run from each vertex and meet the opposite side at a right angle. The point where the three altitudes meet is the orthocenter.

  6. Geometric median - Wikipedia

    en.wikipedia.org/wiki/Geometric_median

    For 3 (non-collinear) points, if any angle of the triangle formed by those points is 120° or more, then the geometric median is the point at the vertex of that angle. If all the angles are less than 120°, the geometric median is the point inside the triangle which subtends an angle of 120° to each three pairs of triangle vertices. [10]

  7. Apollonius's theorem - Wikipedia

    en.wikipedia.org/wiki/Apollonius's_theorem

    In geometry, Apollonius's theorem is a theorem relating the length of a median of a triangle to the lengths of its sides. It states that the sum of the squares of any two sides of any triangle equals twice the square on half the third side, together with twice the square on the median bisecting the third side.

  8. Triangle median income is 70% of what it takes to buy a ... - AOL

    www.aol.com/triangle-median-income-70-takes...

    While there are some signs of cooling after historic peaks last June, the Triangle’s median sale price was still $395,000 — up 6.7% from a year ago. Income and wages, however, are not keeping ...

  9. Triangle - Wikipedia

    en.wikipedia.org/wiki/Triangle

    A triangle in which one of the angles is a right angle is a right triangle, a triangle in which all of its angles are less than that angle is an acute triangle, and a triangle in which one of it angles is greater than that angle is an obtuse triangle. [8] These definitions date back at least to Euclid. [9]