Search results
Results From The WOW.Com Content Network
In mathematics, the distributive property of binary operations is a generalization of the distributive law, which asserts that the equality (+) = + is always true in elementary algebra. For example, in elementary arithmetic , one has 2 ⋅ ( 1 + 3 ) = ( 2 ⋅ 1 ) + ( 2 ⋅ 3 ) . {\displaystyle 2\cdot (1+3)=(2\cdot 1)+(2\cdot 3).}
The FOIL method is a special case of a more general method for multiplying algebraic expressions using the distributive law. The word FOIL was originally intended solely as a mnemonic for high-school students learning algebra. The term appears in William Betz's 1929 text Algebra for Today, where he states: [2]
The principle of distributivity states that the algebraic distributive law is valid, where both logical conjunction and logical disjunction are distributive over each other so that for any propositions A, B and C the equivalences
An element x is called a dual distributive element if ∀y,z: x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z). In a distributive lattice, every element is of course both distributive and dual distributive. In a non-distributive lattice, there may be elements that are distributive, but not dual distributive (and vice versa).
The generalized distributive law (GDL) is a generalization of the distributive property which gives rise to a general message passing algorithm. [1] It is a synthesis of the work of many authors in the information theory , digital communications , signal processing , statistics , and artificial intelligence communities.
To investigate the left distributivity of set subtraction over unions or intersections, consider how the sets involved in (both of) De Morgan's laws are all related: () = = () always holds (the equalities on the left and right are De Morgan's laws) but equality is not guaranteed in general (that is, the containment might be strict).
Galileo's law of odd numbers. A ramification of the difference of consecutive squares, Galileo's law of odd numbers states that the distance covered by an object falling without resistance in uniform gravity in successive equal time intervals is linearly proportional to the odd numbers. That is, if a body falling from rest covers a certain ...
To illustrate why the distributive law fails, consider a particle moving on a line and (using some system of units where the reduced Planck constant is 1) let [Note 1] p = "the particle has momentum in the interval [0, + 1 ⁄ 6] " q = "the particle is in the interval [−1, 1] " r = "the particle is in the interval [1, 3] " We might observe that: