When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Wildcard (Java) - Wikipedia

    en.wikipedia.org/wiki/Wildcard_(Java)

    A bounded wildcard is one with either an upper or a lower inheritance constraint. The bound of a wildcard can be either a class type, interface type, array type, or type variable. Upper bounds are expressed using the extends keyword and lower bounds using the super keyword. Wildcards can state either an upper bound or a lower bound, but not both.

  3. Upper and lower bounds - Wikipedia

    en.wikipedia.org/wiki/Upper_and_lower_bounds

    Similarly, a function g defined on domain D and having the same codomain (K, ≤) is an upper bound of f, if g(x) ≥ f (x) for each x in D. The function g is further said to be an upper bound of a set of functions, if it is an upper bound of each function in that set.

  4. Big O notation - Wikipedia

    en.wikipedia.org/wiki/Big_O_notation

    Big O notation is a mathematical notation that describes the limiting behavior of a function when the argument tends towards a particular value or infinity. Big O is a member of a family of notations invented by German mathematicians Paul Bachmann, [1] Edmund Landau, [2] and others, collectively called Bachmann–Landau notation or asymptotic notation.

  5. Partially ordered set - Wikipedia

    en.wikipedia.org/wiki/Partially_ordered_set

    In our running example, {,,} and {} are the maximal and minimal elements. Removing these, there are 3 maximal elements and 3 minimal elements (see Fig. 5). Upper and lower bounds: For a subset A of P, an element x in P is an upper bound of A if a ≤ x, for each element a in A.

  6. Join and meet - Wikipedia

    en.wikipedia.org/wiki/Join_and_meet

    For example, that every equivalence relation is symmetric, but not necessarily antisymmetric, is indicated by in the "Symmetric" column and in the "Antisymmetric" column, respectively. All definitions tacitly require the homogeneous relation R {\displaystyle R} be transitive : for all a , b , c , {\displaystyle a,b,c,} if a R b {\displaystyle ...

  7. Branch and bound - Wikipedia

    en.wikipedia.org/wiki/Branch_and_bound

    The following is the skeleton of a generic branch and bound algorithm for minimizing an arbitrary objective function f. [3] To obtain an actual algorithm from this, one requires a bounding function bound, that computes lower bounds of f on nodes of the search tree, as well as a problem-specific branching rule.

  8. Interval arithmetic - Wikipedia

    en.wikipedia.org/wiki/Interval_arithmetic

    The main objective of interval arithmetic is to provide a simple way of calculating upper and lower bounds of a function's range in one or more variables. These endpoints are not necessarily the true supremum or infimum of a range since the precise calculation of those values can be difficult or impossible; the bounds only need to contain the function's range as a subset.

  9. Order theory - Wikipedia

    en.wikipedia.org/wiki/Order_theory

    This leads to the definition of upper bounds. Given a subset S of some poset P, an upper bound of S is an element b of P that is above all elements of S. Formally, this means that s ≤ b, for all s in S. Lower bounds again are defined by inverting the order. For example, -5 is a lower bound of the natural numbers as a subset of the integers.