Search results
Results From The WOW.Com Content Network
Binary search Visualization of the binary search algorithm where 7 is the target value Class Search algorithm Data structure Array Worst-case performance O (log n) Best-case performance O (1) Average performance O (log n) Worst-case space complexity O (1) Optimal Yes In computer science, binary search, also known as half-interval search, logarithmic search, or binary chop, is a search ...
For example, in the search path for a string of length k, there will be k traversals down middle children in the tree, as well as a logarithmic number of traversals down left and right children in the tree. Thus, in a ternary search tree on a small number of very large strings the lengths of the strings can dominate the runtime. [4]
There are O(log n) such queries for each start position i, so the size of the dynamic programming table B is O(n log n). The value of B[i, j] is the index of the minimum of the range A[i…i+2 j-1]. Filling the table takes time O(n log n), with the indices of minima using the following recurrence [1] [2]
Algorithms are often evaluated by their computational complexity, or maximum theoretical run time. Binary search functions, for example, have a maximum complexity of O(log n), or logarithmic time. In simple terms, the maximum number of operations needed to find the search target is a logarithmic function of the size of the search space.
For constant dimension query time, average complexity is O(log N) [6] in the case of randomly distributed points, worst case complexity is O(kN^(1-1/k)) [7] Alternatively the R-tree data structure was designed to support nearest neighbor search in dynamic context, as it has efficient algorithms for insertions and deletions such as the R* tree. [8]
When using such algorithms to factor a large number n, it is necessary to search for smooth numbers (i.e. numbers with small prime factors) of order n 1/2. The size of these values is exponential in the size of n (see below). The general number field sieve, on the other hand, manages to search for smooth numbers that are subexponential in the ...
Expected O(n log n) time can however be achieved by shuffling the array, but this does not help for equal items. The worst-case behaviour can be improved by using a self-balancing binary search tree. Using such a tree, the algorithm has an O(n log n) worst-case performance, thus being degree-optimal for a comparison sort.
The algorithm was designed by Quentin F. Stout and Bette Warren in a 1986 CACM paper, [1] based on work done by Colin Day in 1976. [2] The algorithm requires linear (O(n)) time and is in-place. The original algorithm by Day generates as compact a tree as possible: all levels of the tree are completely full except possibly the bottom-most.