When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Associative containers (C++) - Wikipedia

    en.wikipedia.org/wiki/Associative_containers_(C++)

    Associative containers are guaranteed to perform operations of insertion, deletion, and testing whether an element is in it, in logarithmic time – O(log n). As such, they are typically implemented using self-balancing binary search trees and support bidirectional iteration.

  3. Range minimum query - Wikipedia

    en.wikipedia.org/wiki/Range_minimum_query

    There are O(log n) such queries for each start position i, so the size of the dynamic programming table B is O(n log n). The value of B[i, j] is the index of the minimum of the range A[i…i+2 j-1]. Filling the table takes time O(n log n), with the indices of minima using the following recurrence [1] [2]

  4. Binary search - Wikipedia

    en.wikipedia.org/wiki/Binary_search

    Binary search Visualization of the binary search algorithm where 7 is the target value Class Search algorithm Data structure Array Worst-case performance O (log n) Best-case performance O (1) Average performance O (log n) Worst-case space complexity O (1) Optimal Yes In computer science, binary search, also known as half-interval search, logarithmic search, or binary chop, is a search ...

  5. Splay tree - Wikipedia

    en.wikipedia.org/wiki/Splay_tree

    A splay tree is a binary search tree with the additional property that recently accessed elements are quick to access again. Like self-balancing binary search trees, a splay tree performs basic operations such as insertion, look-up and removal in O(log n) amortized time.

  6. Nearest neighbor search - Wikipedia

    en.wikipedia.org/wiki/Nearest_neighbor_search

    For constant dimension query time, average complexity is O(log N) [6] in the case of randomly distributed points, worst case complexity is O(kN^(1-1/k)) [7] Alternatively the R-tree data structure was designed to support nearest neighbor search in dynamic context, as it has efficient algorithms for insertions and deletions such as the R* tree. [8]

  7. Interpolation search - Wikipedia

    en.wikipedia.org/wiki/Interpolation_search

    Using big-O notation, the performance of the interpolation algorithm on a data set of size n is O(n); however under the assumption of a uniform distribution of the data on the linear scale used for interpolation, the performance can be shown to be O(log log n). [3] [4] [5]

  8. Tree sort - Wikipedia

    en.wikipedia.org/wiki/Tree_sort

    Expected O(n log n) time can however be achieved by shuffling the array, but this does not help for equal items. The worst-case behaviour can be improved by using a self-balancing binary search tree. Using such a tree, the algorithm has an O(n log n) worst-case performance, thus being degree-optimal for a comparison sort.

  9. Binary logarithm - Wikipedia

    en.wikipedia.org/wiki/Binary_logarithm

    For example, O(2 log 2 n) is not the same as O(2 ln n) because the former is equal to O(n) and the latter to O(n 0.6931...). Algorithms with running time O(n log n) are sometimes called linearithmic. [37] Some examples of algorithms with running time O(log n) or O(n log n) are: Average time quicksort and other comparison sort algorithms [38]