When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    The nearest floating-point number with only five digits is 12.346. And 1/3 = 0.3333… is not a floating-point number in base ten with any finite number of digits. In practice, most floating-point systems use base two, though base ten (decimal floating point) is also common.

  3. Round-off error - Wikipedia

    en.wikipedia.org/wiki/Round-off_error

    The IEEE standard stores the sign, exponent, and significand in separate fields of a floating point word, each of which has a fixed width (number of bits). The two most commonly used levels of precision for floating-point numbers are single precision and double precision.

  4. Minifloat - Wikipedia

    en.wikipedia.org/wiki/Minifloat

    The graphic demonstrates the addition of even smaller (1.3.2.3)-minifloats with 6 bits. This floating-point system follows the rules of IEEE 754 exactly. NaN as operand produces always NaN results. Inf − Inf and (−Inf) + Inf results in NaN too (green area). Inf can be augmented and decremented by finite values without change.

  5. Division algorithm - Wikipedia

    en.wikipedia.org/wiki/Division_algorithm

    In floating-point arithmetic the use of (1/D) presents little problem, [a] but in integer arithmetic the reciprocal will always evaluate to zero (assuming |D| > 1). It is not necessary to use specifically (1/D); any value (X/Y) that reduces to (1/D) may be used. For example, for division by 3, the factors 1/3, 2/6, 3/9, or 194/582 could be used.

  6. IEEE 754-1985 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754-1985

    IEEE 754-1985 [1] is a historic industry standard for representing floating-point numbers in computers, officially adopted in 1985 and superseded in 2008 by IEEE 754-2008, and then again in 2019 by minor revision IEEE 754-2019. [2]

  7. Single-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Single-precision_floating...

    A floating-point variable can represent a wider range of numbers than a fixed-point variable of the same bit width at the cost of precision. A signed 32-bit integer variable has a maximum value of 2 31 − 1 = 2,147,483,647, whereas an IEEE 754 32-bit base-2 floating-point variable has a maximum value of (22 −23) × 2 127 ≈ 3.4028235 ...

  8. Decimal floating point - Wikipedia

    en.wikipedia.org/wiki/Decimal_floating_point

    For example, while a fixed-point representation that allocates 8 decimal digits and 2 decimal places can represent the numbers 123456.78, 8765.43, 123.00, and so on, a floating-point representation with 8 decimal digits could also represent 1.2345678, 1234567.8, 0.000012345678, 12345678000000000, and so on.

  9. Computer number format - Wikipedia

    en.wikipedia.org/wiki/Computer_number_format

    To approximate the greater range and precision of real numbers, we have to abandon signed integers and fixed-point numbers and go to a "floating-point" format. In the decimal system, we are familiar with floating-point numbers of the form (scientific notation): 1.1030402 × 10 5 = 1.1030402 × 100000 = 110304.02. or, more compactly: 1.1030402E5