Search results
Results From The WOW.Com Content Network
The ampere is an SI base unit and electric current is a base quantity in the International System of Quantities (ISQ). [4]: 15 Electric current is also known as amperage and is measured using a device called an ammeter. [2]: 788 Electric currents create magnetic fields, which are used in motors, generators, inductors, and transformers.
The law was named after the German physicist Georg Ohm, who, in a treatise published in 1827, described measurements of applied voltage and current through simple electrical circuits containing various lengths of wire. Ohm explained his experimental results by a slightly more complex equation than the modern form above (see § History below).
Here, the 3-form J is called the electric current form or current 3-form: =. That F is a closed form , and the exterior derivative of its Hodge dual is the current 3-form, express Maxwell's equations: [ 4 ]
As of the 2019 revision of the SI, the ampere is defined by fixing the elementary charge e to be exactly 1.602 176 634 × 10 −19 C, [6] [9] which means an ampere is an electric current equivalent to 10 19 elementary charges moving every 1.602 176 634 seconds or 6.241 509 074 × 10 18 elementary charges moving in a second.
the total electric charge density (total charge per unit volume), ρ, and; the total electric current density (total current per unit area), J. The universal constants appearing in the equations (the first two ones explicitly only in the SI formulation) are: the permittivity of free space, ε 0, and; the permeability of free space, μ 0, and
The current entering any junction is equal to the current leaving that junction. i 2 + i 3 = i 1 + i 4. This law, also called Kirchhoff's first law, or Kirchhoff's junction rule, states that, for any node (junction) in an electrical circuit, the sum of currents flowing into that node is equal to the sum of currents flowing out of that node; or equivalently:
Electricity plays a central role in many modern technologies, serving in electric power where electric current is used to energise equipment, and in electronics dealing with electrical circuits involving active components such as vacuum tubes, transistors, diodes and integrated circuits, and associated passive interconnection technologies.
A schematic representation of long distance electric power transmission. From left to right: G=generator, U=step-up transformer, V=voltage at beginning of transmission line, Pt=power entering transmission line, I=current in wires, R=total resistance in wires, Pw=power lost in transmission line, Pe=power reaching the end of the transmission line, D=step-down transformer, C=consumers.