Search results
Results From The WOW.Com Content Network
N-linked glycosylation is the attachment of an oligosaccharide, a carbohydrate consisting of several sugar molecules, sometimes also referred to as glycan, to a nitrogen atom (the amide nitrogen of an asparagine (Asn) residue of a protein), in a process called N-glycosylation, studied in biochemistry. [1]
N-linked glycosylation is a very prevalent form of glycosylation and is important for the folding of many eukaryotic glycoproteins and for cell–cell and cell–extracellular matrix attachment. The N-linked glycosylation process occurs in eukaryotes in the lumen of the endoplasmic reticulum and widely in archaea, but very rarely in bacteria.
N-linked glycosylation is an important process, especially in eukaryotes where over half of all proteins have N-linked sugars attached [13] and where it is the most common form of glycosylation. [23] The processes are also important in prokaryotes [13] and archaeans. [24]
The sugar Glc 3 Man 9 GlcNAc 2 (where Glc=Glucose, Man=Mannose, and GlcNAc=N-acetylglucosamine) is attached to an asparagine (Asn) residue in the sequence Asn-X-Ser or Asn-X-Thr where X is any amino acid except proline. This sequence is called a glycosylation sequon. The reaction catalyzed by OST is the central step in the N-linked ...
A chemical glycosylation reaction involves the coupling of a glycosyl donor, to a glycosyl acceptor forming a glycoside. [1] [2] [3] If both the donor and acceptor are sugars, then the product is an oligosaccharide. The reaction requires activation with a suitable activating reagent.
Tunicamycin blocks N-linked glycosylation (N-glycans) and treatment of cultured human cells with tunicamycin causes cell cycle arrest in G1 phase. It is used as an experimental tool in biology, e.g. to induce unfolded protein response. [2] Tunicamycin is produced by several bacteria, including Streptomyces clavuligerus and Streptomyces ...
N-Linked glycans derive their name from the fact that the glycan is attached to an asparagine (Asn, N) residue, and are amongst the most common linkages found in nature. Although the majority of N-linked glycans take the form GlcNAc-β-Asn [6] other less common structural linkages such as GlcNac-α-Asn [7] and Glc-Asn [8] have been observed. In ...
O-GlcNAc differs from other forms of protein glycosylation: (i) O-GlcNAc is not elongated or modified to form more complex glycan structures, (ii) O-GlcNAc is almost exclusively found on nuclear and cytoplasmic proteins rather than membrane proteins and secretory proteins, and (iii) O-GlcNAc is a highly dynamic modification that turns over more ...