When.com Web Search

  1. Ads

    related to: deductive reasoning in geometry examples questions printable version pdf sheet

Search results

  1. Results From The WOW.Com Content Network
  2. Van Hiele model - Wikipedia

    en.wikipedia.org/wiki/Van_Hiele_model

    The object of thought is deductive reasoning (simple proofs), which the student learns to combine to form a system of formal proofs (Euclidean geometry). Learners can construct geometric proofs at a secondary school level and understand their meaning. They understand the role of undefined terms, definitions, axioms and theorems in

  3. Mathematical proof - Wikipedia

    en.wikipedia.org/wiki/Mathematical_proof

    One example is the parallel postulate, which is neither provable nor refutable from the remaining axioms of Euclidean geometry. Mathematicians have shown there are many statements that are neither provable nor disprovable in Zermelo–Fraenkel set theory with the axiom of choice (ZFC), the standard system of set theory in mathematics (assuming ...

  4. List of rules of inference - Wikipedia

    en.wikipedia.org/wiki/List_of_rules_of_inference

    Each logic operator can be used in an assertion about variables and operations, showing a basic rule of inference. Examples: The column-14 operator (OR), shows Addition rule: when p=T (the hypothesis selects the first two lines of the table), we see (at column-14) that p∨q=T.

  5. Natural deduction - Wikipedia

    en.wikipedia.org/wiki/Natural_deduction

    In logic and proof theory, natural deduction is a kind of proof calculus in which logical reasoning is expressed by inference rules closely related to the "natural" way of reasoning. [1] This contrasts with Hilbert-style systems , which instead use axioms as much as possible to express the logical laws of deductive reasoning .

  6. Rule of inference - Wikipedia

    en.wikipedia.org/wiki/Rule_of_inference

    For example, the rule of inference called modus ponens takes two premises, one in the form "If p then q" and another in the form "p", and returns the conclusion "q". The rule is valid with respect to the semantics of classical logic (as well as the semantics of many other non-classical logics ), in the sense that if the premises are true (under ...

  7. Deduction theorem - Wikipedia

    en.wikipedia.org/wiki/Deduction_theorem

    In practice, it is usually enough to know that we could do this. We normally use the natural-deductive form in place of the much longer axiomatic proof. First, we write a proof using a natural-deduction like method: Q 1. hypothesis Q→R 2. hypothesis; R 3. modus ponens 1,2 (Q→R)→R 4. deduction from 2 to 3; Q→((Q→R)→R) 5. deduction ...